463浏览
0点赞

深度残差网络(Deep Residual Network, ResNet)

深度残差网络(Deep Residual Network, ResNet)是一种非常成功的深度学习方法,自2015年底在arXiv上公布以来,在谷歌学术(Google Scholar)上的引用次数已经接近3万次。深度残差收缩网络是ResNet的一种新型改进,后续
451浏览
0点赞

宽度模型 (wide model)

一种线性模型,通常有很多稀疏输入特征。我们之所以称之为“宽度模型”,是因为这是一种特殊类型的神经网络,其大量输入均直接与输出节点相连。与深度模型相比,宽度模型通常更易于调试和检查。虽然宽度模型无法通过
369浏览
0点赞

权重 (weight)

线性模型中特征的系数,或深度网络中的边。训练线性模型的目标是确定每个特征的理想权重。如果权重为 0,则相应的特征对模型来说没有任何贡献。
510浏览
0点赞

验证集 (validation set)

数据集的一个子集,从训练集分离而来,用于调整超参数。与训练集和测试集相对。
428浏览
0点赞

非监督式机器学习 (unsupervised machine learning)

训练模型,以找出数据集(通常是无标签数据集)中的模式。非监督式机器学习最常见的用途是将数据分为不同的聚类,使相似的样本位于同一组中。例如,非监督式机器学习算法可以根据音乐的各种属性将歌曲分为不同的聚类
355浏览
0点赞

无标签样本 (unlabeled example)

包含特征但没有标签的样本。无标签样本是用于进行推断的输入内容。在半监督式和非监督式学习中,无标签样本在训练期间被使用。
1426浏览
0点赞

真正例率(true positive rate, 简称 TP 率)

是召回率的同义词,即:真正例率 = 真正例数 / ( 真正例数 + 假负例数 )真正例率是 ROC 曲线的 y 轴。
376浏览
0点赞
437浏览
0点赞
343浏览
0点赞
312浏览
0点赞
372浏览
0点赞

时间序列分析 (time series analysis)

机器学习和统计学的一个子领域,旨在分析时态数据。很多类型的机器学习问题都需要时间序列分析,其中包括分类、聚类、预测和异常检测。例如,您可以利用时间序列分析根据历史销量数据预测未来每月的冬外套销量。
518浏览
0点赞
489浏览
0点赞
322浏览
0点赞
385浏览
0点赞
371浏览
0点赞
323浏览
0点赞
今日排行
本周排行
本月排行
免费注册体验
联系我们