500浏览
0点赞

深度神经网络(DNN)

深度神经网络(DNN):使用统计学方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。 简单理解,深度神经网络就是有多个隐藏层的多层感知器网络,根据实际应用情况不同,其形态和大小也都不
582浏览
0点赞

径向基函数神经网络(Radical Basis Function Neural Network, RBF NN)

径向基函数神经网络(Radical Basis Function Neural Network, RBF NN): 1988 年由 John Moody和Christian J Darken提出了一种网络结构,属于前向型神经网络,理论上可以任意精度逼近任意连续函数,适合解决分类问题
504浏览
0点赞

受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)

受限玻尔兹曼机(Restricted Boltzmann Machine, RBM),是一种简化的特殊的玻尔兹曼机,1986年由Paul Smolensky提出。和BM相比,其隐藏层中的节点之间没有互相连接,其可见节点间也没有连接,因此其计算相对更简单
610浏览
1点赞

玻尔兹曼机(Bolzmann Machine, BM)

玻尔兹曼机(Bolzmann Machine, BM):也称 Stochastic Hopfield Network with Hidden Units,是一种随机递归神经网络,可以看做是一种随机生成的Hopfield网络。1983年-1986年,由Hinton和Sejnowski提出,该神经网络
546浏览
1点赞

自适应共振理论(Adaptive Resource Theory,ART)

自适应共振理论(Adaptive Resource Theory,ART),1976年由美国波士顿大学学者G.A.Carpenter提出,试图为人类的心理和认证活动建立统一的数学理论。随后又和S.Grossberg提出了ART网络。ART网络由两层组成两个子系
607浏览
0点赞

对偶传播神经网络(Counter-Propagation Network, CPN)

对偶传播神经网络(Counter-Propagation Network, CPN) , 1987年甶美国学者Robert Hecht-Nielsen提出,最早用来实现样本选择匹配系统,能存储二进制或模拟值的模式对,可用于联想存储、模式分类、函数通近、统计分
486浏览
0点赞

学习向量量化神经网络(Learning Vector Quantization, LVQ)

学习向量量化神经网络(Learning Vector Quantization, LVQ):在竞争网络的基础上,由Kohonen提出,其核心为将竞争学习与有监督学习相结合,学习过程中通过教师信号对输入样本的分配类别进行规定,克服了自组织网络
495浏览
0点赞

竞争学习(Competition Learning)

竞争学习(Competition Learning) 是人工神经网络的一种学习方式,指网络单元群体中所有单元相互竞争对外界刺激模式响应的权利,竞争取胜的单元的连接权重向着对这一刺激有利的方向变化,相对来说竞争取胜的单元抑
622浏览
0点赞

自组织神经网络(Self Organization Neural Network, SONN)

自组织神经网络(Self Organization Neural Network, SONN),又称自组织竞争神经网络,通过自动寻找样本中的内在规律和本质属性,自组织、自适应地改变网络参数与结构。通常通过竞争学习(Competitive Learning)实
445浏览
0点赞

自适应线性单元(Adaptive Linear Neuron, ADALINE)

1962年,斯坦福大学教授Widrow提出一种自适应可调的神经网络,其基本构成单元称为自适应线性单元(Adaptive Linear Neuron, ADALINE),其主要作用是线性逼近一个函数式而进行模式联想。该模型是最早用于实际工程解
562浏览
1点赞

反馈神经网络(FeedBack NN )

反馈神经网络(FeedBack NN ):又称递归网络、回归网络,是一种将输出经过一步时移再接入到输入层的神经网络系统。这类网络中,神经元可以互连,有些神经元的输出会被反馈至同层甚至前层的神经元。常见的有Hopfield神
359浏览
0点赞

前馈神经网络(FeedForward NN )

前馈神经网络(FeedForward NN ) :是一种最简单的神经网络,采用单向多层结构,各神经元分层排列,每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层,各层间没有反馈。前馈网络包括三类节点:■
426浏览
1点赞

神经网络的例子

下面通过车牌自动识别的例子,来解释神经网络。所谓车牌自动识别,就是高速公路的探头拍下车牌照片,计算机识别出照片里的数字。这个例子里面,车牌照片就是输入,车牌号码就是输出,照片的清晰度可以设置权重(w)
403浏览
0点赞

神经网络的运作过程

一个神经网络的搭建,需要满足三个条件。输入和输出权重(w)和阈值(b)多层感知器的结构也就是说,需要事先画出上面出现的那张图。其中,最困难的部分就是确定权重(w)和阈值(b)。目前为止,这两个值都是主观给
403浏览
0点赞

一个简单的决策模型

单个的感知器构成了一个简单的决策模型,已经可以拿来用了。真实世界中,实际的决策模型则要复杂得多,是由多个感知器组成的多层网络。上图中,底层感知器接收外部输入,做出判断以后,再发出信号,作为上层感知器的
421浏览
0点赞

感知器的例子

下面来看一个例子。城里正在举办一年一度的游戏动漫展览,小明拿不定主意,周末要不要去参观。他决定考虑三个因素。天气:周末是否晴天?同伴:能否找到人一起去?价格:门票是否可承受?这就构成一个感知器。上面三
416浏览
0点赞

神经网络感知器

历史上,科学家一直希望模拟人的大脑,造出可以思考的机器。人为什么能够思考?科学家发现,原因在于人体的神经网络。1、外部刺激通过神经末梢,转化为电信号,转导到神经细胞(又叫神经元)。2、无数神经元构成神经
470浏览
1点赞

人工智能 —— 知识图谱

初学者刚开始学习人工智能时,面对铺天盖地的概念,如,人工智能、机器学习、深度学习、计算机视觉等等,一时间可能就被这些“高深”的名称给唬住了,不知道如何下手。又或者有些同学在学习了很长时间后,问他学习的
1933浏览
2点赞

独立同分布(iid,independently identically distribution)

独立同分布(iid,independently identically distribution)在概率统计理论中,指随机过程中,任何时刻的取值都为随机变量,如果这些随机变量服从同一分布,并且互相独立,那么这些随机变量是独立同分布。独立同分
694浏览
1点赞

特征分解 Eigendecomposition

特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。N 维非零向量 v 是 N×N 的矩阵
今日排行
本周排行
本月排行
免费注册体验
联系我们