公开数据集
数据结构 ? 506.6M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
This project was initiated as a test of the Nvidia DIGITS and NVCaffe software and attempted to assess what sort of images are required for a good dataset. I managed an mAP of 20% using the BVLC_googlenet.cafemodel and was able to successfully infer wasps using the Nvidia Jetson TX2. There's a video here: [WASP IN A JAR][1]. The main project page, with instructions on how to use DIGITS and Amazon Web Services is here: [MAIN PROJECT PAGE][2]
Content
There are about 3,000 images of the wasps, each labelled with boundary boxes for object inference. Some of the images are partially occluded and truncated, but the labels DO NOT describe these attributes.
Acknowledgements
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Inspiration
Please reply with some criticism of the images. Some of my questions are:
1. Should all the images be pristine quality?
2. Should the images reflect 'real life' camera environments?
3. What % of the images should be blurred / out of focus?
4. How important is it to label the occlusions and truncations?
5. How important is having different backgrounds in the images?
….. Thanks!
[1]: https://www.youtube.com/watch?v=01MJmSwYuIo
[2]: https://hackaday.io/project/161581-wasp-and-asian-hornet-sentry-gun
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。