公开数据集
数据结构 ? 25.3M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
This page provides downloads for our BMVC'15 paper Hybrid One-Shot 3D Hand Pose Estimation by Exploiting Uncertainties.
(a) | (b) | (c) |
A learned joint regressor might fail to recover the pose of a hand due to ambiguities or lack of training data (a). We make use of the inherent uncertainty of a regressor by enforcing it to generate multiple proposals (b). The crosses show the top three proposals for the proximal interphalangeal joint of the ring finger for which the corresponding ground truth position is drawn in green. The marker size of the proposals corresponds to degree of confidence. Our subsequent model-based optimisation procedure exploits these proposals to estimate the true pose (c).
Material
The BMVC'15 paper, extended abstract and slides can be downloaded here:
Paper (PDF)
Extended Abstract (PDF)
Citation
If you use this dataset or results, please cite our paper:
Hybrid One-Shot 3D Hand Pose Estimation by Exploiting Uncertainties
In Proc. British Machine Vision Conference (BMVC), 2015
BibTeX reference for convenience:
@INPROCEEDINGS{poier15a,
author = {Georg Poier and Konstantinos Roditakis and Samuel Schulter
and Damien Michel and Horst Bischof and Antonis A. Argyros},
title = {{Hybrid One-Shot 3D Hand Pose Estimation by Exploiting Uncertainties}},
booktitle = {{Proc. British Machine Vision Conference (BMVC)}},
year = {2015}
}
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。