公开数据集
数据结构 ? 0.65M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Content
The dataset was created using the RSSI readings of an array of 13 ibeacons in the first floor of Waldo Library, Western Michigan University. Data was collected using iPhone 6S. The dataset contains two sub-datasets: a labeled dataset (1420 instances) and an unlabeled dataset (5191 instances). The recording was performed during the operational hours of the library. For the labeled dataset, the input data contains the location (label column), a timestamp, followed by RSSI readings of 13 iBeacons. RSSI measurements are negative values. Bigger RSSI values indicate closer proximity to a given iBeacon (e.g., RSSI of -65 represent a closer distance to a given iBeacon compared to RSSI of -85). For out-of-range iBeacons, the RSSI is indicated by -200. The locations related to RSSI readings are combined in one column consisting a letter for the column and a number for the row of the position. The following figure depicts the layout of the iBeacons as well as the arrange of locations.
![iBeacons Layout](https://www.kaggle.com/mehdimka/ble-rssi-dataset/downloads/iBeacon_Layout.jpg)
Attribute Information
- location: The location of receiving RSSIs from ibeacons b3001 to b3013; symbolic values showing the column and row of the location on the map (e.g., A01 stands for column A, row 1).
- date: Datetime in the format of ‘d-m-yyyy hh:mm:ss’
- b3001 - b3013: RSSI readings corresponding to the iBeacons; numeric, integers only.
Acknowledgements
Provider:
Mehdi Mohammadi and Ala Al-Fuqaha, {mehdi.mohammadi, ala-alfuqaha}@wmich.edu,
Department of Computer Science,
Western Michigan University
Citation Request:
M. Mohammadi, A. Al-Fuqaha, M. Guizani, J. Oh, “Semi-supervised Deep Reinforcement Learning in Support of IoT and Smart City Services,” IEEE Internet of Things Journal, Vol. PP, No. 99, 2017.
Inspiration
# How unlabeled data can help for an improved learning system. How a GAN model can synthesizes viable paths based on the little labeled data and larger set of unlabeled data.
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。