公开数据集
数据结构 ? 1.36G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
WIDER FACE dataset is a face detection benchmark dataset, of which images are selected from the publicly available WIDER dataset. We choose 32,203 images and label 393,703 faces with a high degree of variability in scale, pose and occlusion as depicted in the sample images. WIDER FACE dataset is organized based on 61 event classes. For each event class, we randomly select 40%/10%/50% data as training, validation and testing sets. We adopt the same evaluation metric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets, we do not release bounding box ground truth for the test images. Users are required to submit final prediction files, which we shall proceed to evaluate.
Benchmark
For details on the evaluation scheme please refer to the technical report.
For detection resutls please refer to the result page.
Scenario-Ext: A face detector is trained using any external data, and tested on the WIDER FACE test partition.
Scenario-Int: A face detector is trained using WIDER FACE training/validation partitions, and tested on WIDER FACE test partition.
Submission
Please contact us to evaluate your detection results. An evaluation server will be available soon.
The detection result for each image should be a text file, with the
same name of the image. The detection results are organized by the event
categories. For example, if the directory of a testing image is
"./0--Parade/0_Parade_marchingband_1_5.jpg", the detection result should
be writtern in the text file in
"./0--Parade/0_Parade_marchingband_1_5.txt". The detection output is
expected in the follwing format:
...
< image name i >
< number of faces in this image = im >
< face i1 >
< face i2 >
...
< face im >
...
Each text file should contain 1 row per detected bounding box, in the format "[left, top, width, height, score]".
Please see the output example files and the README if the above descriptions are unclear.
Related Datasets
Below we list other face detection datasets. A more detailed comparison of the datasets can be found in the paper.
IJB-A dataset: IJB-A is proposed for face detection and face recognition. IJB-A contains 24,327 images and 49,759 faces.
MALF dataset: MALF is the first face detection dataset that supports fine-gained evaluation. MALF consists of 5,250 images and 11,931 faces.
FDDB dataset: FDDB dataset contains the annotations for 5,171 faces in a set of 2,845 images.
AFW dataset: AFW dataset is built using Flickr images. It has 205 images with 473 labeled faces. For each face, annotations include a rectangular bounding box, 6 landmarks and the pose angles.
Citation
@inproceedings{yang2016wider, Author = {Yang, Shuo and Luo, Ping and Loy, Chen Change and Tang, Xiaoou}, Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, Title = {WIDER FACE: A Face Detection Benchmark}, Year = {2016}}
Contact
For questions and result submission, please contact Shuo Yang at shuoyang.1213@gmail.com
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。