Select Language

AI社区

公开数据集

斯坦福大学-犬类数据集

斯坦福大学-犬类数据集

756.8M
2275 浏览
5 喜欢
197 次下载
0 条讨论
Animal 2D Box,Image Caption

The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world. This dataset has been built using......

数据结构 ? 756.8M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world. This dataset has been built using images and annotation from ImageNet for the task of fine-grained image categorization. Contents of this dataset:

        1.Number of categories: 120
        2.Number of images: 20,580
        3.Annotations: Class labels, Bounding boxes

    Dataset ReferencePrimary:
      Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao and Li Fei-Fei. Novel dataset for Fine-Grained Image Categorization. First Workshop on Fine-Grained Visual Categorization (FGVC), IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.  [pdf]  [poster]  [BibTex]
    Secondary:
      J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009.  [pdf]  [BibTex]

    baseline Results
    This section contains baseline results on two tasks:

      Mean Accuracy
    The number of training images per class is varied from 1 to 100.
      Comparison of Accuracy per Class
    The accuracy of each class is compared for 15 and 100 training images per class.



    Experimental Setting
    All of the experiments use image regions from the bounding box only for both training and testing.
    The remaining parameters are set to the following values:

    Contact:

    Aditya Khosla、Nityananda、Jayadevaprakash、Bangpeng Yao、Li Fei-Fei

    aditya86@cs.stanford.edu
    bangpeng@cs.stanford.edu



    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:15 去赚积分?
    • 2275浏览
    • 197下载
    • 5点赞
    • 收藏
    • 分享