Select Language

AI社区

公开数据集

快速文本英语单词矢量(包括子单词)

快速文本英语单词矢量(包括子单词)

2756.53M
249 浏览
0 喜欢
0 次下载
0 条讨论
Universities and Colleges Classification

数据结构 ? 2756.53M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    English Word Vectors with sub-word information --- About fastText
    fastText is a library for efficient learning of word representations and sentence classification. One of the key features of fastText word representation is its ability to produce vectors for any words, even made-up ones. Indeed, fastText word vectors are built from vectors of substrings of characters contained in it. This allows you to build vectors even for misspelled words or concatenation of words. About the vectors
    These pre-trained vectors contain 1 million word vectors learned with subword information on Wikipedia 2017, the UMBC webbase corpus and the statmt.org news dataset. In total, it contains 16B tokens. The first line of the file contains the number of words in the vocabulary and the size of the vectors. Each line contains a word followed by its vectors, like in the default fastText text format. Each value is space separated. Words are ordered by descending frequency. Acknowledgements
    These word vectors are distributed under the Creative Commons Attribution-Share-Alike License 3.0. P. Bojanowski*, E. Grave*, A. Joulin, T. Mikolov, Enriching Word Vectors with Subword Information
    A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, Bag of Tricks for Efficient Text Classification
    A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip: Compressing text classification models

    (* These authors contributed equally.)
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 249浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享