公开数据集
数据结构 ? 1.9G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Day traders identify patterns in the market that tell them when to enter and exit a trade. They never hold market position over night meaning profit targets for trades are expressed in minutes not days. To further back their technical analysis they view the data in multiple time domains trying to locate so called "support" and "resistance" levels. Many of the technical indicators are based on price alone.
This data set should allow a machine algorithm to form better technical indicators then a human, thus allowing it to predict probabilities for entry conditions better then a human day trader.
For this data set we analysed 7 years of NASDAQ100 data (from 2010 to mid 2017). Every morning we wait until 90 minutes of trading history has occurred before scanning for a simple pattern. This pattern is when the 15 minute EMA crosses over the 65 minute EMA.
Symbols included in the search:
FB - Facebook
BABA - Alibaba
GOOG - Google class C
AAPL - Apple
TSLA - Tesla
MSFT - Microsoft
NVDA - NVidia
AMZN - Amazon
CRM - Salesforce
GOOGL - Google class A
ADBE - Adobe
NFLX - Netflix
INTC - Intel
BIDU - Baidu
Content
once the pattern has been detected I give you 2400 minute (40 hours)
of previous history. As well as 20 minutes of future history.
The data will be formatted as follows.
File name: dataNSYM.csv
N is an incremental integer
SYM is the stock symbol ticker (FB, BABA, ect..)
Inside each of the csv files you will find 2420 lines of comma separated values, with format:
ISO formatted date, closing price, volume.
Eg:
2017-10-17T14:18:00.000Z,201.87,55800.0 2017-10-17T14:19:00.000Z,201.21,137786.0 2017-10-17T14:20:00.000Z,201.852,103695.0 2017-10-17T14:21:00.000Z,201.6,81362.0 2017-10-17T14:22:00.000Z,201.54,30183.0 2017-10-17T14:23:00.000Z,201.43,72405.0 2017-10-17T14:24:00.000Z,201.15,79411.0 2017-10-17T14:25:00.000Z,201.48,125713.0
The task should report a probability that this will be a successful trade or not.
Further note: One should keep in mind that there are trading fees involved for the entry and exit of the trade. So in order to profile you will need to beat this spread.
Acknowledgements
Further ideas and questions can be directed to http://daytrader.ai
Thanks and I hope you have some fun with this set :)
blog: https://medium.com/@coreyauger/daytrader-ai-machine-learning-applied-to-intraday-trading-a6b4e44b0274
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。