Select Language

AI社区

公开数据集

卫星图像中的船舶数据集,使用Planet卫星图像对旧金山湾的船只进行分类

卫星图像中的船舶数据集,使用Planet卫星图像对旧金山湾的船只进行分类

185M
449 浏览
0 喜欢
3 次下载
0 条讨论
Business Classification

卫星图像提供对各种市场的独特见解,包括农业、国防和情报、能源和金融。新的商业图像提供商,例如 Planet,每天都在使用小卫星......

数据结构 ? 185M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    卫星图像提供对各种市场的独特见解,包括农业、国防和情报、能源和金融。新的商业图像提供商,例如 Planet,每天都在使用小卫星星座来捕捉整个地球的图像。大量的新图像超出了组织手动查看捕获的每张图像的能力,并且需要机器学习和计算机视觉算法来帮助自动化分析过程。该数据集的目的是帮助解决在卫星图像中检测大型船舶位置的艰巨任务。自动化此流程可应用于许多问题,包括监控港口活动水平和供应链分析。

    Content

    The dataset consists of image chips extracted from Planet satellite imagery collected over the San Francisco Bay and San Pedro Bay areas of California. It includes 4000 80x80 RGB images labeled with either a "ship" or "no-ship" classification. Image chips were derived from PlanetScope full-frame visual scene products, which are orthorectified to a 3 meter pixel size.

    Provided is a zipped directory shipsnet.zip that contains the entire dataset as .png image chips. Each individual image filename follows a specific format: {label} __ {scene id} __ {longitude} _ {latitude}.png

    • label: Valued 1 or 0, representing the "ship" class and "no-ship" class, respectively.

    • scene id: The unique identifier of the PlanetScope visual scene the image chip was extracted from. The scene id can be used with the Planet API to discover and download the entire scene.

    • longitude_latitude: The longitude and latitude coordinates of the image center point, with values separated by a single underscore.

    The dataset is also distributed as a JSON formatted text file shipsnet.json. The loaded object contains data, label, scene_ids, and location lists.

    The pixel value data for each 80x80 RGB image is stored as a list of 19200 integers within the data list. The first 6400 entries contain the red channel values, the next 6400 the green, and the final 6400 the blue. The image is stored in row-major order, so that the first 80 entries of the array are the red channel values of the first row of the image.

    The list values at index i in labels, scene_ids, and locations each correspond to the i-th image in the data list.

    Class Labels

    The "ship" class includes 1000 images. Images in this class are near-centered on the body of a single ship. Ships of different sizes, orientations, and atmospheric collection conditions are included. Example images from this class are shown below.

    ship

    The "no-ship" class includes 3000 images. A third of these are a random sampling of different landcover features - water, vegetion, bare earth, buildings, etc. - that do not include any portion of an ship. The next third are "partial ships" that contain only a portion of an ship, but not enough to meet the full definition of the "ship" class. The last third are images that have previously been mislabeled by machine learning models, typically caused by bright pixels or strong linear features. Example images from this class are shown below.

    no-plane

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:12 去赚积分?
    • 449浏览
    • 3下载
    • 0点赞
    • 收藏
    • 分享