Select Language

AI社区

公开数据集

P300-数据集

P300-数据集

310.83M
289 浏览
0 喜欢
4 次下载
0 条讨论
Health,Biology,Neuroscience Classification

数据结构 ? 310.83M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context [P300](https://www.ncbi.nlm.nih.gov/pubmed/1464675) dataset for eight healthy subjects. This dataset was produced using the standard 6x6 Donchin and Farewell P300 Speller Matrix, with an ISI of 0.125 ms. There are 7 words with 5 letters each. There are 10 intensification sequences per letter. The original procedure used 3 words for training, and tried to decode the remaining 4 words for testing. Subject Age Gender Right-handedness 1 56 M R 2 23 M L 3 21 F R 4 29 M R 5 20 F R 6 24 M R 7 29 M R 8 30 M L Content The most important structure is **data**. - data.X : EEG Matrix (8 channels) - data.y : Labels (1/2) - data.y_stim: Stimulation number: 1-6 rows, 7-12 cols - data.trial: Sample point where each of the 35 trials starts. - data.flash: Sample point where each flashing starts (sample point id, duration, stimulation, hit/nohit) Device: g.Tec g.Nautilus g.LadyBird, 250 Hz, notch filter to 50Hz, bandpass 0.1-30 Hz Acknowledgements We would like to thanks all the subjects that voluntarily accepted to participate in this experiment. We hope they have enjoyed the "Alfajor" that we gave them. Inspiration Try to decode the spelled word directly from the EEG matrix. There are 7 words of 5 letters each. Each letter is composed of 120 stimulations of the P300 matrix, 6 rows and 6 columns, ten times each. The goal is to decode the spelled words from the last 20 letters (4 words). As the ISI is very low, it is challenging to acquire good performances. Produced by the CiC, ITBA University, Buenos Aires, Argentina
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 289浏览
    • 4下载
    • 0点赞
    • 收藏
    • 分享