Select Language

AI社区

公开数据集

更正 OCR 错误

更正 OCR 错误

49.92M
170 浏览
0 喜欢
0 次下载
0 条讨论
Business Classification

数据结构 ? 49.92M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context These files were used in the [ALTA 2017 Challenge](http://www.alta.asn.au/events/sharedtask2017/index.html). The competition was hosted by [Kaggle in Class](https://www.kaggle.com/c/alta-2017-challenge). If you use these data, please cite: D. Mollá, S. Cassidy. Overview of the 2017 ALTA Shared Task: Correcting OCR Errors (2017). *Proc. ALTA 2017*. [https://aclanthology.coli.uni-saarland.de/papers/U17-1014/u17-1014](https://aclanthology.coli.uni-saarland.de/papers/U17-1014/u17-1014) These files are available as a Kaggle dataset at [http://kaggle.com/dmollaaliod/](correect-ocr-errors) Content * `convert.py` - python script for converting files * `train_input.csv` - the training set * `train_output.csv` - the training set with all OCR errors corrected * `train_output_bigrams.csv` - the solutions of the training set. This file is the actual output of the conversion script using the file train_output.csv as input. * `test_input.csv` - the test set * `test_baseline_bigrams.csv` - a sample submission file in the correct format. This file contains the set of bigrams found in test_input.csv, and the resulting F1 score is zero (or close to zero according to the evaluation performed by Kaggle in Class). Acknowledgements Special thanks to The National Library of Australia and its [Trove database](http://trove.nla.gov.au/), from where this data set was sourced.
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 170浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享