公开数据集
数据结构 ? 1.5G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Emotion expression is an essential part of human interaction. The same text can hold different meanings when expressed with different emotions. Thus understanding the text alone is not enough for getting the meaning of an utterance. Acted and natural corpora have been used to detect emotions from speech. Many speech databases for different languages including English, German, Chinese, Japanese, Russian, Italian, Swedish and Spanish exist for modeling emotion recognition. Since there is no reported reference of an available Arabic corpus, we decided to collect the first Arabic Natural Audio Dataset (ANAD) to recognize discrete emotions.
Embedding an effective emotion detection feature in speech recognition system seems a promising solution for decreasing the obstacles faced by the deaf when communicating with the outside world. There exist several applications that allow the deaf to make and receive phone calls normally, as the hearing-impaired individual can type a message and the person on the other side hears the words spoken, and as they speak, the words are received as text by the deaf individual. However, missing the emotion part still makes these systems not hundred percent reliable. Having an effective speech to text and text to speech system installed in their everyday life starting from a very young age will hopefully replace the human ear. Such systems will aid deaf people to enroll in normal schools at very young age and will help them to adapt better in classrooms and with their classmates. It will help them experience a normal childhood and hence grow up to be able to integrate within the society without external help.
Eight videos of live calls between an anchor and a human outside the studio were downloaded from online Arabic talk shows. Each video was then divided into turns: callers and receivers. To label each video, 18 listeners were asked to listen to each video and select whether they perceive a happy, angry or surprised emotion. Silence, laughs and noisy chunks were removed. Every chunk was then automatically divided into 1 sec speech units forming our final corpus composed of 1384 records.
Twenty five acoustic features, also known as low-level descriptors, were extracted. These features are: intensity, zero crossing rates, MFCC 1-12 (Mel-frequency cepstral coefficients), F0 (Fundamental frequency) and F0 envelope, probability of voicing and, LSP frequency 0-7. On every feature nineteen statistical functions were applied. The functions are: maximum, minimum, range, absolute position of maximum, absolute position of minimum, arithmetic of mean, Linear Regression1, Linear Regression2, Linear RegressionA, Linear RegressionQ, standard Deviation, kurtosis, skewness, quartiles 1, 2, 3 and, inter-quartile ranges 1-2, 2-3, 1-3. The delta coefficient for every LLD is also computed as an estimate of the first derivative hence leading to a total of 950 features.
I would have never reached that far without the help of my supervisors. I warmly thank and appreciate Dr. Rached Zantout, Dr. Lama Hamandi, and Dr. Ziad Osman for their guidance, support and constant supervision.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。