公开数据集
数据结构 ? 1897.86M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
3D object representations are valuable resources for multi-view object class detection and scene understanding. Fine-grained recognition is a growing subfield of computer vision that has many real-world applications on distinguishing subtle appearances differences. This cars dataset contains great training and testing sets for forming models that can tell cars from one another. Data originated from Stanford University AI Lab (specific reference below in Acknowledgment section).
Content
The Cars dataset contains 16,185 images of 196 classes of cars. The data is split into 8,144 training images and 8,041 testing images, where each class has been split roughly in a 50-50 split. Classes are typically at the level of Make, Model, Year, ex. 2012 Tesla Model S or 2012 BMW M3 coupe.
Acknowledgements
Data source and banner image: http://ai.stanford.edu/~jkrause/cars/car_dataset.html contains all bounding boxes and labels for both training and tests.
If you use this dataset, please cite the following paper:
**3D Object Representations for Fine-Grained Categorization**
Jonathan Krause, Michael Stark, Jia Deng, Li Fei-Fei
*4th IEEE Workshop on 3D Representation and Recognition, at ICCV 2013 (3dRR-13). Sydney, Australia. Dec. 8, 2013.*
Inspiration
- Can you form a model that can tell the difference between cars by type or colour?
- Which cars are manufactured by Tesla vs BMW?
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。