Select Language

AI社区

公开数据集

百万首歌曲数据集研究

百万首歌曲数据集研究

1.53M
228 浏览
0 喜欢
1 次下载
0 条讨论
Business,Arts and Entertainment,Music,Artificial Intelligence Classification

数据结构 ? 1.53M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context During some studies developed using Million Song Dataset (https://labrosa.ee.columbia.edu/millionsong/), we needed to clean the subset up to get data in a convinient way to our interests. Content This data consists of the results of cleaning up the MSD subset, available in https://labrosa.ee.columbia.edu/millionsong/pages/getting-dataset#subset. Acknowledgements This is a work developed by Marcos Pedro Ferreira Leal (mleal@ime.usp.br), Shayenne da Luz Moura (shayenne@ime.usp.br) e Thais Rodrigues Neubauer (thais.neubauer@usp.br). Inspiration Some of the questions we want to answer (http://www.cs.colostate.edu/~cs555/CS555-Fall2017-HW3.pdf): Q1. For each artist, what is the most commonly tagged genre? Q2. What is the average tempo across all the songs in the dataset? Q3. What is the median danceability score across all the songs in the dataset? Q4. Who are the top ten artists for fast songs (based on their tempo)? Q5. What are top ten songs based on their hotness in each genre? Please also provide the artist name and title for these songs. Q6. On a per-year basis, what is the mean variance of loudness across the songs within the dataset? Q7. How many songs does each artist have in this dataset? Q8. What are the top ten most popular terms (genres) that songs in the dataset have been tagged with?
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 228浏览
    • 1下载
    • 0点赞
    • 收藏
    • 分享