Select Language

AI社区

公开数据集

深NLP

深NLP

0.65M
353 浏览
0 喜欢
0 次下载
0 条讨论
Earth and Nature,Education,Psychology,Linguistics,Languages Classification

数据结构 ? 0.65M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    # What's In The Deep-NLP Dataset? Sheet_1.csv contains 80 user responses, in the response_text column, to a therapy chatbot. Bot said: 'Describe a time when you have acted as a resource for someone else'.  User responded. If a response is 'not flagged', the user can continue talking to the bot. If it is 'flagged', the user is referred to help. Sheet_2.csv contains 125 resumes, in the resume_text column. Resumes were queried from Indeed.com with keyword 'data scientist', location 'Vermont'. If a resume is 'not flagged', the applicant can submit a modified resume version at a later date. If it is 'flagged', the applicant is invited to interview. # What Do I Do With This? Classify new resumes/responses as flagged or not flagged. There are two sets of data here - resumes and responses. Split the data into a train set and a test set to test the accuracy of your classifier. Bonus points for using the same classifier for both problems. Good luck. # Acknowledgements Thank you to [Parsa Ghaffari][1] (Aylien), without whom these visuals (cover photo is in Parsa Ghaffari's excellent LinkedIn [article][2] on English, Spanish and German postive v. negative sentiment analysis) would not exist. # There Is A 'deep natural language processing' Kernel. I will update it. I Hope You Find It Useful. You can use any of the code in that kernel anywhere, on or off Kaggle. Ping me at [@_samputnam][3] for questions. [1]: http://aylien.com [2]: https://www.linkedin.com/pulse/leveraging-deep-learning-multilingual-sentiment-parsa-ghaffari [3]: http://twitter.com/_samputnam
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 353浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享