公开数据集
数据结构 ? 455.45M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
# Context
This is *real* real-time bidding data that is used to predict if an advertiser should bid for a marketing slot e.g. a banner on a webpage. Explanatory variables are things like browser, operation system or time of the day the user is online, marketplace his identifiers were traded on earlier, etc. The column **'convert'** is 1, when the person clicked on the ad, and 0 if this is not the case.
# Content
Unfortunately, the data had to be anonymized, so you basically can't do a lot of feature engineering. I just applied PCA and kept 0.99 of the linear explanatory power. However, I think it's still really interesting data to just test your general algorithms on imbalanced data. ;)
# Inspiration
Since it's heavily imbalanced data, it doesn't make sense to train for accuracy, but rather try to get obtain a good AUC, F1Score, MCC or recall rate, by cross-validating your data.
It's interesting to compare different models (logistic regression, decision trees, svms, ...) over these metrics and see the impact that your split in train:test data has on the data.
It might be good strategy to follow these
[Tactics to combat imbalanced classes](http://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/).
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。