Select Language

AI社区

公开数据集

骑士与勇士期间的推文

骑士与勇士期间的推文

375.92M
472 浏览
0 喜欢
0 次下载
0 条讨论
Sports,Basketball,Text Mining Classification

数据结构 ? 375.92M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context Data set containing Tweets captured during the **3rd game of the 2018 NBA Finals** between **Cleveland Cavaliers** and **Golden State Warriors**. Content All Twitter APIs that return Tweets provide that data encoded using JavaScript Object Notation (JSON). **JSON** is based on key-value pairs, with named attributes and associated values. The JSON file include the following objects and attributes: * **[Tweet](https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/tweet-object)** - Tweets are the basic atomic building block of all things Twitter. The Tweet object has a long list of ‘root-level’ attributes, including fundamental attributes such as `id`, `created_at`, and `text`. Tweet child objects include `user`, `entities`, and `extended_entities.` Tweets that are geo-tagged will have a `place` child object. + **[User](https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/user-object)** - Contains public Twitter account metadata and describes the author of the Tweet with attributes as `name`, `description`, `followers_count`, `friends_count`, etc. + **[Entities](https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/entities-object)** - Provide metadata and additional contextual information about content posted on Twitter. The `entities` section provides arrays of common things included in Tweets: hashtags, user mentions, links, stock tickers (symbols), Twitter polls, and attached media. + **[Extended Entities](https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/extended-entities-object)** - All Tweets with attached photos, videos and animated GIFs will include an `extended_entities` JSON object. + **[Places](https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/geo-objects)** - Tweets can be associated with a location, generating a Tweet that has been ‘geo-tagged.’ More information [here](https://developer.twitter.com/en/docs/tweets/data-dictionary/overview/intro-to-tweet-json). I also included the captured Tweets in a CSV file. In order to convert JSON data into a CSV file, I used the function `parseTweets()`. Acknowledgements I used the `filterStream()` function to open a connection to Twitter's Streaming API, using the keyword **#NBAFinals**. The capture started on **Thursday, June 7th 01:13 am UCT** and finished on **Thursday, June 7th 01:58 am UCT**. Inspiration - Time analysis - Try text mining! - Cross-language differences in Twitter - Use this data to produce a sentiment analysis - Twitter geolocation - Network analysis: graph theory, metrics and properties of the network, community detection, network visualization, etc.
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 472浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享