公开数据集
数据结构 ? 5.57M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
# Bank Marketing
**Abstract:**
The data is related with direct marketing campaigns (phone calls) of a Portuguese banking institution. The classification goal is to predict if the client will subscribe a term deposit (variable y).
**Data Set Information:**
The data is related with direct marketing campaigns of a Portuguese banking institution. The marketing campaigns were based on phone calls. Often, more than one contact to the same client was required, in order to access if the product (bank term deposit) would be ('yes') or not ('no') subscribed.
## Attribute Information:
Bank client data:
- Age (numeric)
- Job : type of job (categorical: 'admin.', 'blue-collar', 'entrepreneur', 'housemaid', 'management', 'retired', 'self-employed', 'services', 'student', 'technician', 'unemployed', 'unknown')
- Marital : marital status (categorical: 'divorced', 'married', 'single', 'unknown' ; note: 'divorced' means divorced or widowed)
- Education (categorical: 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'illiterate', 'professional.course', 'university.degree', 'unknown')
- Default: has credit in default? (categorical: 'no', 'yes', 'unknown')
- Housing: has housing loan? (categorical: 'no', 'yes', 'unknown')
- Loan: has personal loan? (categorical: 'no', 'yes', 'unknown')
Related with the last contact of the current campaign:
- Contact: contact communication type (categorical:
'cellular','telephone')
- Month: last contact month of year (categorical: 'jan', 'feb', 'mar',
..., 'nov', 'dec')
- Day_of_week: last contact day of the week (categorical:
'mon','tue','wed','thu','fri')
- Duration: last contact duration, in seconds (numeric). Important
note: this attribute highly affects the output target (e.g., if
duration=0 then y='no'). Yet, the duration is not known before a call
is performed. Also, after the end of the call y is obviously known.
Thus, this input should only be included for benchmark purposes and
should be discarded if the intention is to have a realistic
predictive model.
Other attributes:
- Campaign: number of contacts performed during this campaign and for
this client (numeric, includes last contact)
- Pdays: number of days that passed by after the client was last
contacted from a previous campaign (numeric; 999 means client was not
previously contacted)
- Previous: number of contacts performed before this campaign and for
this client (numeric)
- Poutcome: outcome of the previous marketing campaign (categorical:
'failure','nonexistent','success')
Social and economic context attributes
- Emp.var.rate: employment variation rate - quarterly indicator
(numeric)
- Cons.price.idx: consumer price index - monthly indicator (numeric)
- Cons.conf.idx: consumer confidence index - monthly indicator
(numeric)
- Euribor3m: euribor 3 month rate - daily indicator (numeric)
- Nr.employed: number of employees - quarterly indicator (numeric)
Output variable (desired target):
- y - has the client subscribed a term deposit? (binary: 'yes', 'no')
## Analysis Steps:
- Atribute information Analysis.
- Machine Learning (Logistic Regression, KNN, SVM, Decision Tree,
Random Forest, Naive Bayes)
- Deep Learning (ANN)
## Source:
- Dataset from : http://archive.ics.uci.edu/ml/datasets/Bank+Marketing#
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。