公开数据集
数据结构 ? 126.25M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
The Icons-50 dataset consists of 10,000 images belonging to 50 classes of icons (e.g., people, food, activities, places, objects, symbols, etc.) collected from different technology companies and platforms (e.g., Apple, Samsung, Google, Facebook, etc.). Each class has icons with different styles (e.g., microsoft's flat vector graphics icon style) and different class subtypes (e.g., 'duck' or 'eagle' subtypes in the 'birds' class). Holding out a particular style, training on all other styles, and computing the accuracy on the held out style benchmarks a classifier's _style robustness_. Holding out a set of class subtypes, training on the remaining subtypes, and computing the accuracy on the held out subtype set benchmarks a classifier's _subtype robustness_. More details are in [this paper][1].
Content
The Icons-50.npy file can be opened with
import numpy as np
icons = np.load('./Icons-50.npy').item()
This dictionary has the keys 'class', with 10000 elements in {0,1,...,49}; 'style', with 10000 elements in {'microsoft', 'apple', ..., 'facebook'}; 'image' with 10000 3x32x32 images representing the icons; 'rendition' , with 10000 strings where each indicates the icon's version; and 'subtype' which specifies the subtype of a class such as 'whale' or 'shark' for the marine animals class.
Acknowledgements
Images were scraped from emojipedia and were cleaned, filtered, and clustered by hand. This dataset appears in the research paper [Benchmarking Neural Network Robustness to Common Corruptions and Surface Variations][2]. The data is mirrored at [this github repository][3]. If you find this dataset useful for your work, consider citing
@article{hendrycks2018robustness,
title={Benchmarking Neural Network Robustness to Common Corruptions and Surface Variations},
author={Dan Hendrycks and Thomas Dietterich},
journal={arXiv preprint arXiv:1807.01697},
year={2018}
}
[1]: https://arxiv.org/abs/1807.01697
[2]: https://arxiv.org/abs/1807.01697
[3]: https://github.com/hendrycks/robustness
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。