Select Language

AI社区

公开数据集

手写字符

手写字符

697.76M
486 浏览
0 喜欢
0 次下载
0 条讨论
Earth and Nature,Classification,Deep Learning,Computer Vision Classification

数据结构 ? 697.76M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context 1. Used Emnist data for Alphabets and Digits. 2. Transformed the Data using some image processing techniques and convert it to 32,32 pixel black and white images. 3. Created the Data set for special character ( @, #, $, & ) 4. Merged the Categories to avoid the misclassification 5. Total 39 Categories in Train and Validation set Content 1. The Data set contains all the English alphabets (small and caps), digits (0-9) and some special characters ( @, #, $, & ) 2. The images are 32 by 32 pixel black and white images 3. There are total 39 categories 26 for Alphabets (small and caps letters are combined to create a single class of each character), 9 for Digits (i.e. 1 to 9 ). to avoid mis-classification digit 0 is combined in character O category. and some special characters ( @, #, $, &). 4. Please refer the github page for trained Model using CNN and Convolution Scripts fro training. https://github.com/VaibhavKhamgaonkar/OCR Acknowledgements Thanks a Lot Vijayalaxmi Rohane for helping me out for creating the Dataset. Inspiration Just wanted to create a good dataset for everyone who wants to create something related to hand written text. i.e. Build an OCR or any other sort of application. I have created model which is around 92.7% accurate which is open sourced on my github account. https://github.com/VaibhavKhamgaonkar/OCR
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 486浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享