Select Language

AI社区

公开数据集

Quoras 数据中独特词的泡菜

Quoras 数据中独特词的泡菜

1.04M
197 浏览
0 喜欢
0 次下载
0 条讨论
Earth and Nature Classification

数据结构 ? 1.04M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context Edit:20170530 Googlenews vectors are good because they can be memory mapped. Spacy doesn't have word distance mover and is still buggy as hell. Gensim has wdm, and can do it from mmap'd word2vec files. All you linux users... omg don't get me started. make myass.file. Have to trim down this shit for the layman trying to get a leg up on this comp. First step... get unique words and then get the unique vectors from the google news linux crap bzip2. Content -- \Kaggle\Quora_20170422\gen_sim_crap\Get_Unique_Words_in_data_v2.py TEST_FILE = os.path.join(BASE_DIR, r'testcsv', r'test.csv') 94%|█████████▍| 2345806/2500000 [00:54<00:03, 42961.02it/s] 55.024147272109985 -- len(unique_words) = 124848 Acknowledgements We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research. Inspiration import time, pickle, os from tqdm import tqdm import string OUT_FILE = r'\Kaggle\Quora_20170422\FeatureEngineering\ListofUniqueTest.pkl' BASE_DIR = r'\Documents\Kaggle\Quora_20170422' #TRAIN_FILE = os.path.join(BASE_DIR, r'traincsv', r'train.csv') TEST_FILE = os.path.join(BASE_DIR, r'testcsv', r'test.csv') def get_words(f, c2r): with tqdm(total=2500000) as pbar: for line in f: #b_string = line.replace(',', ' ') c_string = line.translate(str.maketrans({key: ' ' for key in c2r})) pbar.update() for word in c_string.split(): yield word start_time = time.time() chars_to_replace = string.punctuation + string.digits with open(TEST_FILE, encoding="utf8") as infile: unique_words = sorted(set(get_words(infile, chars_to_replace))) pickle.dump(unique_words, open(OUT_FILE, 'wb'), -1) elapsed_time = time.time() - start_time print(elapsed_time)
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 197浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享