公开数据集
数据结构 ? 1.04M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
Edit:20170530
Googlenews vectors are good because they can be memory mapped. Spacy doesn't have word distance mover and is still buggy as hell. Gensim has wdm, and can do it from mmap'd word2vec files. All you linux users... omg don't get me started. make myass.file. Have to trim down this shit for the layman trying to get a leg up on this comp. First step... get unique words and then get the unique vectors from the google news linux crap bzip2.
Content
-- \Kaggle\Quora_20170422\gen_sim_crap\Get_Unique_Words_in_data_v2.py
TEST_FILE = os.path.join(BASE_DIR, r'testcsv', r'test.csv')
94%|█████████▍| 2345806/2500000 [00:54<00:03, 42961.02it/s]
55.024147272109985
-- len(unique_words) = 124848
Acknowledgements
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Inspiration
import time, pickle, os
from tqdm import tqdm
import string
OUT_FILE = r'\Kaggle\Quora_20170422\FeatureEngineering\ListofUniqueTest.pkl'
BASE_DIR = r'\Documents\Kaggle\Quora_20170422'
#TRAIN_FILE = os.path.join(BASE_DIR, r'traincsv', r'train.csv')
TEST_FILE = os.path.join(BASE_DIR, r'testcsv', r'test.csv')
def get_words(f, c2r):
with tqdm(total=2500000) as pbar:
for line in f:
#b_string = line.replace(',', ' ')
c_string = line.translate(str.maketrans({key: ' ' for key in c2r}))
pbar.update()
for word in c_string.split():
yield word
start_time = time.time()
chars_to_replace = string.punctuation + string.digits
with open(TEST_FILE, encoding="utf8") as infile:
unique_words = sorted(set(get_words(infile, chars_to_replace)))
pickle.dump(unique_words, open(OUT_FILE, 'wb'), -1)
elapsed_time = time.time() - start_time
print(elapsed_time)
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。