公开数据集
数据结构 ? 59.3M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
Having such a task as predicting the travel time of taxis, it can be insightful to have a deeper look at the underlying street network of the city. Network Analysis can enable us to get insights for why certain taxi trips take longer than others given some basic network properties. Examples for the analysis can be: calculate the shortest path, measure the influence of specific streets on the robustness of the network or find out which streets are key points in the network when it comes to traffic flow.
Content
This dataset contains one large Graph for the Street Network of New York City in GraphML format and a subgraph for the area of Manhattan for fast testing of your Analysis.
Each Graph was created with the awesome python package https://github.com/gboeing/osmnx which is not available on Kaggle. The Graphs nodes attributes are taken from OSM and contain information to which other nodes they are connected, how long the connection is, which speed limit it has etc.
Acknowledgements
https://github.com/gboeing/osmnx
Inspiration
Explore the New York Street Network, gain a deeper understanding for network analysis and craft some useful Features for the Taxi Trip Prediction Competition!
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。