Select Language

AI社区

公开数据集

威斯康星州乳腺癌数据库

威斯康星州乳腺癌数据库

0.02M
233 浏览
0 喜欢
2 次下载
0 条讨论
Earth and Nature,Health,Biology,Cancer,Health Conditions Classification

数据结构 ? 0.02M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context This breast cancer databases was obtained from the University of Wisconsin Hospitals, Madison from Dr. William H. Wolberg. Content Past Usage: Attributes 2 through 10 have been used to represent instances. Each instance has one of 2 possible classes: benign or malignant. 1. Wolberg,~W.~H., \& Mangasarian,~O.~L. (1990). Multisurface method of pattern separation for medical diagnosis applied to breast cytology. In {\it Proceedings of the National Academy of Sciences}, {\it 87}, 9193--9196. -- Size of data set: only 369 instances (at that point in time) -- Collected classification results: 1 trial only -- Two pairs of parallel hyperplanes were found to be consistent with 50% of the data -- Accuracy on remaining 50% of dataset: 93.5% -- Three pairs of parallel hyperplanes were found to be consistent with 67% of data -- Accuracy on remaining 33% of dataset: 95.9% 2. Zhang,~J. (1992). Selecting typical instances in instance-based learning. In {\it Proceedings of the Ninth International Machine Learning Conference} (pp. 470--479). Aberdeen, Scotland: Morgan Kaufmann. -- Size of data set: only 369 instances (at that point in time) -- Applied 4 instance-based learning algorithms -- Collected classification results averaged over 10 trials -- Best accuracy result: -- 1-nearest neighbor: 93.7% -- trained on 200 instances, tested on the other 169 -- Also of interest: -- Using only typical instances: 92.2% (storing only 23.1 instances) -- trained on 200 instances, tested on the other 169 4. Relevant Information: Samples arrive periodically as Dr. Wolberg reports his clinical cases. The database therefore reflects this chronological grouping of the data. This grouping information appears immediately below, having been removed from the data itself: Group 1: 367 instances (January 1989) Group 2: 70 instances (October 1989) Group 3: 31 instances (February 1990) Group 4: 17 instances (April 1990) Group 5: 48 instances (August 1990) Group 6: 49 instances (Updated January 1991) Group 7: 31 instances (June 1991) Group 8: 86 instances (November 1991) ----------------------------------------- Total: 699 points (as of the donated datbase on 15 July 1992) Note that the results summarized above in Past Usage refer to a dataset of size 369, while Group 1 has only 367 instances. This is because it originally contained 369 instances; 2 were removed. The following statements summarizes changes to the original Group 1's set of data: ## Group 1 : 367 points: 200B 167M (January 1989) ## Revised Jan 10, 1991: Replaced zero bare nuclei in 1080185 & 1187805 ## Revised Nov 22,1991: Removed 765878,4,5,9,7,10,10,10,3,8,1 no record ## : Removed 484201,2,7,8,8,4,3,10,3,4,1 zero epithelial ## : Changed 0 to 1 in field 6 of sample 1219406 ## : Changed 0 to 1 in field 8 of following sample: ## : 1182404,2,3,1,1,1,2,0,1,1,1 5. Number of Instances: 699 (as of 15 July 1992) 6. Number of Attributes: 10 plus the class attribute 7. Attribute Information: (class attribute has been moved to last column) # Attribute Domain -- ----------------------------------------- 1. Sample code number id number 2. Clump Thickness 1 - 10 3. Uniformity of Cell Size 1 - 10 4. Uniformity of Cell Shape 1 - 10 5. Marginal Adhesion 1 - 10 6. Single Epithelial Cell Size 1 - 10 7. Bare Nuclei 1 - 10 8. Bland Chromatin 1 - 10 9. Normal Nucleoli 1 - 10 10. Mitoses 1 - 10 11. Class: (2 for benign, 4 for malignant) 8. Missing attribute values: 16 There are 16 instances in Groups 1 to 6 that contain a single missing (i.e., unavailable) attribute value, now denoted by "?". 9. Class distribution: Benign: 458 (65.5%) Malignant: 241 (34.5%) Acknowledgements 1. O. L. Mangasarian and W. H. Wolberg: "Cancer diagnosis via linear programming
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 233浏览
    • 2下载
    • 0点赞
    • 收藏
    • 分享