Select Language

AI社区

公开数据集

AISegment.com马廷人类数据集

AISegment.com马廷人类数据集

14769.9M
200 浏览
0 喜欢
0 次下载
0 条讨论
Arts and Entertainment,Online Communities,Image Data Classification

数据结构 ? 14769.9M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Context Human segmentation, i.e. high resolution extraction of humans from images, is a fascinating application with many uses. However, the problem is significantly under-constrained, making it an active area of research for developing more advanced methods. This dataset, developed by [AISegment](https://github.com/aisegmentcn/matting_human_datasets) aims to help by providing a solid quality dataset of images and masks. Quoting from the dataset author's [GitHub](https://github.com/aisegmentcn/matting_human_datasets) (translated via Google Translate): > This dataset is currently the largest portrait matting dataset, containing 34,427 images and corresponding matting results. The data set was marked by the high quality of Beijing Play Star Convergence Technology Co., Ltd., and the portrait soft segmentation model trained using this data set has been commercialized. The original images in the dataset are from Flickr, Baidu, and Taobao. After face detection and area cropping, a half-length portrait of 600*800 was generated. The clip_img directory is a half-length portrait image in the format jpg; the matting directory is the corresponding matting file (convenient to confirm the matting quality), the format is png, you should first extract the alpha map from the png image before training. For example, using opencv you can get an alpha map like this: In_image = cv2.imread('png image file path', cv2.IMREAD_UNCHANGED) Alpha = in_image[:,:,3] License See the author's [GitHub](https://github.com/aisegmentcn/matting_human_datasets). Content This dataset comes in two parts: 1. Full images 2. The respective RGB "masks" or "cutouts" of those images Acknowledgements Thanks to the folks from SegmentAI for putting this dataset together.
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 200浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享