公开数据集
数据结构 ? 14769.9M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
Human segmentation, i.e. high resolution extraction of humans from images, is a fascinating application with many uses. However, the problem is significantly under-constrained, making it an active area of research for developing more advanced methods. This dataset, developed by [AISegment](https://github.com/aisegmentcn/matting_human_datasets) aims to help by providing a solid quality dataset of images and masks.
Quoting from the dataset author's [GitHub](https://github.com/aisegmentcn/matting_human_datasets) (translated via Google Translate):
> This dataset is currently the largest portrait matting dataset, containing 34,427 images and corresponding matting results.
The data set was marked by the high quality of Beijing Play Star Convergence Technology Co., Ltd., and the portrait soft segmentation model trained using this data set has been commercialized.
The original images in the dataset are from Flickr, Baidu, and Taobao. After face detection and area cropping, a half-length portrait of 600*800 was generated.
The clip_img directory is a half-length portrait image in the format jpg; the matting directory is the corresponding matting file (convenient to confirm the matting quality), the format is png, you should first extract the alpha map from the png image before training. For example, using opencv you can get an alpha map like this:
In_image = cv2.imread('png image file path', cv2.IMREAD_UNCHANGED)
Alpha = in_image[:,:,3]
License
See the author's [GitHub](https://github.com/aisegmentcn/matting_human_datasets).
Content
This dataset comes in two parts:
1. Full images
2. The respective RGB "masks" or "cutouts" of those images
Acknowledgements
Thanks to the folks from SegmentAI for putting this dataset together.
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。