公开数据集
数据结构 ? 47.99M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
trans_about.txt for WISDM_Act_v1.1 dataset
See readme.txt for information about the WISDM Lab, rights,
and other general information.
For our transformation process, we take 10 seconds worth of
accelerometer samples (200 records/lines in the raw file)
and transform them into a single example/tuple of 46 values.
Most of the features we generate are simple statistical
measures.
Associated tasks: classification
* Number of examples: 5,424
* Number of attributes: 46
* Missing attribute values: None
* Class distribution:
* Walking -> 2,082 -> 38.4%,
* Jogging -> 1,626 -> 30.0%,
* Upstairs -> 633 -> 11.7%,
* Downstairs -> 529 -> 9.8%,
* Sitting -> 307 -> 5.7%,
* Standing -> 247 -> 4.6%
* transformed.arff follows the Attribute-Relation File Format
specified [here](http://weka.wikispaces.com/ARFF+%28stable+version%29)
* Field descriptions: To see the field definitions, read the arff file's header.
* UNIQUE_ID: just that, a unique identifier for each tuple. We exclude this field when making predictions
* user is the id number of the user that the data is from.
* X0..x9, Y0..Y9, Z0..Z9 are bins, their values are the fraction of accelerometer samples that fell within that bin
* XAVG, YAVG, ZAVG are the average x, y, and z values over the 200 records in the example.
* XPEAK, YPEAK, ZPEAK are approximations of the dominant frequency. First, the greatest value in the series is identified, then all local peak values within 10% of its amplitude are identified. If the number of peaks is less than 3, then the threshhold is lowered until at least 3 peaks can be found. The times between consecutive peaks are summed and divided by the number of peaks.
* XABSOLDEV, YABSOLDEV, ZABSOLDEV are the average absolute deviations from the mean value for each axis.
* XSTANDDEV, YSTANDDEV, ZSTANDDEV are the standard deviations for each axis.
* RESULTANT is the average of the square roots of the sum of the values of each axis squared √(xi^2 + yi^2 + zi^2).
* class is the activity that the user was performing during this example.
For a detailed specification, see section 2.2 of:
Jennifer R. Kwapisz, Gary M. Weiss and Samuel A. Moore (2010).
["Activity Recognition using Cell Phone Accelerometers"](http://www.cis.fordham.edu/wisdm/public_files/sensorKDD-2010.pdf)
Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC.
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。