Select Language

AI社区

公开数据集

斯坦福自然语言推理科珀斯

斯坦福自然语言推理科珀斯

373.19M
267 浏览
0 喜欢
0 次下载
0 条讨论
Education,Linguistics,Languages Classification

数据结构 ? 373.19M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    The SNLI corpus (version 1.0) is a collection of 570k human-written English sentence pairs manually labeled for balanced classification with the labels *entailment*, *contradiction*, and *neutral*, supporting the task of natural language inference (NLI), also known as recognizing textual entailment (RTE). We aim for it to serve both as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, as well as a resource for developing NLP models of any kind. Acknowledgements This dataset was kindly made available bye the [Stanford Natural Language Processing Group](https://nlp.stanford.edu/). Please cite it as: [Samuel R. Bowman](https://www.nyu.edu/projects/bowman/), [Gabor Angeli](http://cs.stanford.edu/~angeli/), [Christopher Potts](http://www.stanford.edu/~cgpotts/), and [Christopher D. Manning](http://nlp.stanford.edu/~manning/). 2015. *A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)* Inspiration This dataset has been used to evaluate academic work on sentence encoding-based models for 3 way classification, with previous scores tabulated at https://nlp.stanford.edu/projects/snli/. Most of the entries use deep learning. How close to those scores (peak of 88.8% test accuracy) can you get with less computationally intensive methods?
    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 267浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享