公开数据集
数据结构 ? 373.19M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
The SNLI corpus (version 1.0) is a collection of 570k human-written English sentence pairs manually labeled for balanced classification with the labels *entailment*, *contradiction*, and *neutral*, supporting the task of natural language inference (NLI), also known as recognizing textual entailment (RTE). We aim for it to serve both as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, as well as a resource for developing NLP models of any kind.
Acknowledgements
This dataset was kindly made available bye the [Stanford Natural Language Processing Group](https://nlp.stanford.edu/). Please cite it as:
[Samuel R. Bowman](https://www.nyu.edu/projects/bowman/), [Gabor Angeli](http://cs.stanford.edu/~angeli/), [Christopher Potts](http://www.stanford.edu/~cgpotts/), and [Christopher D. Manning](http://nlp.stanford.edu/~manning/). 2015. *A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)*
Inspiration
This dataset has been used to evaluate academic work on sentence encoding-based models for 3 way classification, with previous scores tabulated at https://nlp.stanford.edu/projects/snli/. Most of the entries use deep learning. How close to those scores (peak of 88.8% test accuracy) can you get with less computationally intensive methods?
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。