公开数据集
数据结构 ? 88.9M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
TruMedicines has trained a deep convolutional neural network to autoencode and retrieve a saved image, from a large image dataset based on the random pattern of dots on the surface of the pharmaceutical tablet (pill). Using a mobile phone app a user can query the image datebase and verify the query pill is not counterfeit and is authentic, additional meta data can be displayed to the user: manf date, manf location, drug expiration date, drug strength, adverse reactions etc.
Content
TruMedicines Pharmaceutical images of 252 speckled pill images. We have convoluted the images to create 20,000 training database by: rotations, grey scale, black and white, added noise, non-pill images, images are 292px x 292px in jpeg format
In this playground competition, Kagglers are challenged to develop deep Convolutional Neural Network and hash codes to accurately identify images of pills and quickly retrieved from our database. Jpeg images of pills can be autoencoded using a CNN and retrieved using a CNN hashing code index. Our Android app takes a phone of a pill and sends a query to the image database for a match, then returns meta data abut the pill: manf date, expiration date, ingredients, adverse reactions etc. Techniques from computer vision alongside other current technologies can make recognition of non-counterfeit, medications cheaper, faster, and more reliable.
Acknowledgements
Special Thanks to Microsoft Paul Debaun and Steve Borg and NWCadence, Bellevue WA for their assistance
Inspiration
TruMedicines is using machine learning on a mobile app to stop the spread of counterfeit medicines around the world. Every year the World Health Organization WHO estimates 1 million people die or become disabled due to counterfeit medicine.
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。