公开数据集
数据结构 ? 0.01M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
At the end of each year, Spotify compiles a playlist of the songs streamed most often over the course of that year. This year's playlist (Top Tracks of 2018) includes 100 songs. The question is: What do these top songs have in common? Why do people like them?
**Original Data Source:** The audio features for each song were extracted using the Spotify Web API and the spotipy Python library. Credit goes to Spotify for calculating the audio feature values.
**Data Description:** There is one .csv file in the dataset. (top2018.csv) This file includes:
- Spotify URI for the song
- Name of the song
- Artist(s) of the song
- Audio features for the song (such as danceability, tempo, key etc.)
- A more detailed explanation of the audio features can be found in the Metadata tab.
**Exploring the Data:** Some suggestions for what to do with the data:
- Look for patterns in the audio features of the songs. Why do people
stream these songs the most?
- Try to predict one audio feature based on the others
- See which features correlate the most
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。