Select Language

AI社区

公开数据集

可描述纹理数据集 (DTD),可供计算机视觉社区用于研究目的

可描述纹理数据集 (DTD),可供计算机视觉社区用于研究目的

1.17G
320 浏览
0 喜欢
0 次下载
0 条讨论
Others Classification

Our ability of vividly describing the content of images isa clear demonstration of the power of human visual system. Not......

数据结构 ? 1.17G

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Our ability of vividly describing the content of images is    a clear demonstration of the power of human visual system. Not only we can recognise objects in images (e.g. a cat, a person, or a car), but we can also describe them to the most minute details, extracting an impressive amount of information at a glance. But visual perception is not limited to the recognition and description of objects. Prior to high-level semantic understanding, most textural patterns elicit a rich array of visual impressions. We could describe a texture as "polka dotted, regular, sparse, with blue dots on a white background"; or as "noisy, line-like, and irregular".

    Our aim is to reproduce this capability in machines. Scientifically, the aim is to gain further insight in how textural information may be processed, analysed, and represented by an intelligent system. Compared to classic task of textural analysis such as material recognition, such perceptual properties are much richer in variety and structure, inviting new technical challenges.

    DTD is a texture database, consisting of 5640 images, organized according to a list of 47 terms (categories) inspired from human perception. There are 120 images for each category.    Image sizes range between 300x300 and 640x640, and the images contain at least 90% of the surface representing the category attribute. The images were collected from    Google and Flickr by entering our proposed attributes and related terms as search queries.    The images were annotated using Amazon Mechanical Turk in several iterations. For each image we provide key attribute (main category) and a list of joint attributes.

       

    The data is split in three equal parts, in train, validation and test, 40 images per class, for each split. We provide the ground truth annotation for both key and joint attributes, as well as the    10 splits of the data we used for evaluation.    

    Related paper

    • M.Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, A. Vedaldi, "Describing Textures in the Wild"      ( PDF      | Poster  )    

    	    @InProceedings{cimpoi14describing,
    	      Author    = {M. Cimpoi and S. Maji and I. Kokkinos and S. Mohamed and and A. Vedaldi},
    	      Title     = {Describing Textures in the Wild},
    	      Booktitle = {Proceedings of the {IEEE} Conf. on Computer Vision and Pattern Recognition ({CVPR})},
    	      Year      = {2014}}	

     

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:12 去赚积分?
    • 320浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享