公开数据集
数据结构 ? 0M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Context
The GDELT Project is the largest, most comprehensive, and highest resolution open database of human society ever created. Just the 2015 data alone records nearly three quarters of a trillion emotional snapshots and more than 1.5 billion location references, while its total archives span more than 215 years, making it one of the largest open-access spatio-temporal datasets in existance and pushing the boundaries of "big data" study of global human society. Its Global Knowledge Graph connects the world's people, organizations, locations, themes, counts, images and emotions into a single holistic network over the entire planet. How can you query, explore, model, visualize, interact, and even forecast this vast archive of human society?
Content
GDELT 2.0 has a wealth of features in the event database which includes events reported in articles published in 65 live translated languages, measurements of 2,300 emotions and themes, high resolution views of the non-Western world, relevant imagery, videos, and social media embeds, quotes, names, amounts, and more.
You may find these code books helpful:
[GDELT Global Knowledge Graph Codebook V2.1] [1] (PDF)
[GDELT Event Codebook V2.0][2] (PDF)
## Querying BigQuery tables You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at `bigquery-public-data.github_repos.[TABLENAME]`. **[Fork this kernel to get started][98]** to learn how to safely manage analyzing large BigQuery datasets. Acknowledgements You may redistribute, rehost, republish, and mirror any of the GDELT datasets in any form. However, any use or redistribution of the data must include a citation to the GDELT Project and a link to the website (https://www.gdeltproject.org/). [1]: http://data.gdeltproject.org/documentation/GDELT-Global_Knowledge_Graph_Codebook-V2.1.pdf [2]: http://data.gdeltproject.org/documentation/GDELT-Event_Codebook-V2.0.pdf
[GDELT Global Knowledge Graph Codebook V2.1] [1] (PDF)
[GDELT Event Codebook V2.0][2] (PDF)
## Querying BigQuery tables You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at `bigquery-public-data.github_repos.[TABLENAME]`. **[Fork this kernel to get started][98]** to learn how to safely manage analyzing large BigQuery datasets. Acknowledgements You may redistribute, rehost, republish, and mirror any of the GDELT datasets in any form. However, any use or redistribution of the data must include a citation to the GDELT Project and a link to the website (https://www.gdeltproject.org/). [1]: http://data.gdeltproject.org/documentation/GDELT-Global_Knowledge_Graph_Codebook-V2.1.pdf [2]: http://data.gdeltproject.org/documentation/GDELT-Event_Codebook-V2.0.pdf
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。