公开数据集
数据结构 ? 5.9G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Pipeline of our data collection process. Our photo collectors were first distributed in over 500 different retail stores and collected over 10k high-resolution shelf images. Then we use a pre-trained detection model to extract the bounding boxes of potential objects of interests. After that, our human annotators discard the incorrect bounding boxes, including heavily occluded images and images that is not a valid retail product. The remaining images are annotated by the annotators.
Categorized information of the RP2K dataset
Comparing to other datasets, our dataset shows considerably larger number of categories, while maintaining a decent amount of images.
Long tail problem in fine-grained recognition. With the decreased number of available images, the recognition accuracy is tend to decrease.
ATTENTION
This
dataset and code packages are free for academic usage. You can run them
at your own risk. For other purposes, please contact the corresponding
author Jingtian Peng (pjt@pinlandata.com)
@article{peng2020rp2k,
title={RP2K: A Large-Scale Retail Product Dataset forFine-Grained Image Classification},
author={Peng, Jingtian and Xiao, Chang and Wei, Xun and Li, Yifan},
journal={arXiv preprint arXiv:2006.12634},
year={2020}
}
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。