Select Language

AI社区

公开数据集

RP2K

RP2K

5.9G
957 浏览
1 喜欢
2 次下载
0 条讨论
Smart Retailing Classification

Pipeline of our data collection process. Our photo collectors were first distributed in over 500 different retail stores......

数据结构 ? 5.9G

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Pipeline of our data collection process. Our photo collectors were first distributed in over 500 different retail stores and collected over 10k high-resolution shelf images. Then we use a pre-trained detection model to extract the bounding boxes of potential objects of interests. After that, our human annotators discard the incorrect bounding boxes, including heavily occluded images and images that is not a valid retail product. The remaining images are annotated by the annotators.

    Categorized information of the RP2K dataset


    Categorized information of the RP2K dataset

    16480905



    Comparing to other datasets, our dataset shows considerably larger number of categories, while maintaining a decent amount of images.


    Long tail problem in fine-grained recognition. With the decreased number of available images, the recognition accuracy is tend to decrease.

    ATTENTION

    This dataset and code packages are free for academic usage. You can run them at your own risk. For other purposes, please contact the corresponding author Jingtian Peng (pjt@pinlandata.com)

    @article{peng2020rp2k,
    title={RP2K: A Large-Scale Retail Product Dataset forFine-Grained Image Classification},
    author={Peng, Jingtian and Xiao, Chang and Wei, Xun and Li, Yifan},
    journal={arXiv preprint arXiv:2006.12634},
    year={2020}
    }

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:10 去赚积分?
    • 957浏览
    • 2下载
    • 1点赞
    • 收藏
    • 分享