公开数据集
数据结构 ? 2.24M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
## Context
In [Hiring By Machine](https://aiethics.princeton.edu/wp-content/uploads/sites/587/2018/12/Princeton-AI-Ethics-Case-Study-5.pdf), a fictional case study from the Princeton Dialogues on AI and Ethics, developers at the company Strategeion create a machine learning system called PARiS to automatically rank job applicants based on the content of their resumes.
This dataset can be used alongside the case study or as a toy dataset for exploring fairness in machine learning.
## Content
The data is split into two files:
- `resumes_development.csv`: 619 records used for training and validation.
- `resumes_pilot.csv`: 1986 records used for the pilot phase.
Each record has 222 binary features:
- 218 skill features: whether or not the corresponding skill is on the applicant's resume
- 4 protected features: demographic information about the applicant
The columns are labeled and the list of skills can be found in `skills.txt`. The skills were selected from popular skills in [the LinkedIn directory](https://www.linkedin.com/directory/topics-a/).
The four protected features are:
- `Veteran`: 1 if the applicant is a veteran, 0 otherwise
- `Female`: 1 if the applicant is female, 0 otherwise
- `URM`: 1 if the applicant is an underrepresented minority, 0 otherwise
- `Disability`: 1 if the applicant has a disability, 0 otherwise
When using this dataset with the case study, the custom scikit-learn classifier `PARiSClassifier` may be used to represent the model created by the Strategeion developers. The classifier is defined in `fairness.py` and `PARiS.pickle` contains the weights for the classifier. The fictional applicant from the case study, Hara, is represented as index 1720 in the pilot dataset.
## Acknowledgements
- Artificial data generated by Vinesh Kannan
- Inspired by [Case Study 5: Hiring By Machine](https://aiethics.princeton.edu/case-studies/) from the Princeton Dialogues on AI and Ethics
- Photo by rawpixel on Unsplash
×
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
暂无相关内容。
暂无相关内容。
- 分享你的想法
去分享你的想法~~
全部内容
欢迎交流分享
开始分享您的观点和意见,和大家一起交流分享.
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。