公开数据集
数据结构 ? 111.45G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
RGB-D Object Dataset
-
The RGB-D Object Dataset is a large dataset of 300 common household objects. The objects are organized into 51 categories arranged using WordNet hypernym-hyponym relationships (similar to ImageNet). This dataset was recorded using a Kinect style 3D camera that records synchronized and aligned 640x480 RGB and depth images at 30 Hz. Each object was placed on a turntable and video sequences were captured for one whole rotation. For each object, there are 3 video sequences, each recorded with the camera mounted at a different height so that the object is viewed from different angles with the horizon.
-
Unlike many existing datasets,such as Caltech 101 and ImageNet, objects in this dataset are organized into both categories and instances. In these datasets, the class dog contains images from many different dogs and there is no way to tell whether two images contain the same dog, while in the RGB-D Object Dataset the category soda can is divided into physically unique instances like Pepsi Can and Mountain Dew Can. The dataset also provides ground truth pose information for all 300 objects.
RGB-D Scenes Dataset v.2
- The RGB-D Scenes Dataset v2 consists of 14 scenes containing furniture (chair, coffee table, sofa, table) and a subset of the objects in the RGB-D Object Dataset (bowls, caps, cereal boxes, coffee mugs, and soda cans). Each scene is a point cloud created by aligning a set of video frames using Patch Volumes Mapping*. These 3D reconstructions and ground truth object annotations are exactly those used in our ICRA 2014 paper (see README).
RGB-D Scenes Dataset
- This dataset contains 8 scenes annotated with objects that belong to the RGB-D Object Dataset. Each scene is a single video sequence consisting of multiple RGB-D frames.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。