Select Language

AI社区

公开数据集

WikiMovies

WikiMovies

54.43M
357 浏览
0 喜欢
0 次下载
0 条讨论
Others Text

数据结构 ? 54.43M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Directly reading documents and being able to answer questions from them is an unsolved challenge. To avoid its inherent difficulty, question answering (QA) has been directed towards using Knowledge Bases (KBs) instead, which has proven effective. Unfortunately KBs often suffer from being too restrictive, as the schema cannot support certain types of answers, and too sparse, e.g. Wikipedia contains much more information than Freebase. In this work we introduce a new method, Key-Value Memory Networks, that makes reading documents more viable by utilizing different encodings in the addressing and output stages of the memory read operation. TEMNLP 2016o compare using KBs, information extraction or Wikipedia documents directly in a single framework we construct an analysis tool, WIKIMOVIES, a QA dataset that contains raw text alongside a preprocessed KB, in the domain of movies. Our method reduces the gap between all three settings. It also achieves state-of-the-art results on the existing WIKIQA benchmark.

    The dataset includes only the QA part of the Movie Dialog dataset, but using three different settings of knowledge: using a traditional knowledge base (KB), using Wikipedia as the source of knowledge, or using IE (information extraction) over Wikipedia. This allows to test the ability of models to directly read documents to answer questions, and to compare this to traditional KBs in the same setting. See the paper for more details:

    A. H. Miller, A. Fisch, J. Dodge, A. Karimi, A. Bordes, J. Weston. Key-Value Memory Networks for Directly Reading Documents, arXiv:1606.03126.

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:0 去赚积分?
    • 357浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享