公开数据集
数据结构 ? 159G
README.md
一个大规模、高质量的视频数据集Vimeo90K。这个数据集由从vimeo.com下载的8.98万个视频片段组成,其中包含大量场景和动作。它设计用于以下四个视频处理任务:时间帧插值、视频去噪、视频去块和视频超分辨率。
Vimeo90K数据集结构:
1、Triplet dataset (for temporal frame interpolation):
The triplet dataset consists of 73,171 3-frame sequences with a fixed
resolution of 448 x 256, extracted from 15K selected video clips from
Vimeo-90K. This dataset is designed for temporal frame interpolation.
Download links are
Testing set only (17GB): zip
Both training and test set (33GB): zip
2、Septuplet dataset (for video denoising, deblocking, and super-resoluttion):
Notice: we have recently updated our testing denoising dataset to
fix a bug in denoising test data generation. The new quantitative result
of our algorithm is reported in our updated paper
The septuplet dataset consists of 91,701 7-frame sequences with fixed
resolution 448 x 256, extracted from 39K selected video clips from
Vimeo-90K. This dataset is designed to video denoising, deblocking, and
super-resolution.
The test set for video denoising (16GB): zip
The test set for video deblocking (11GB): zip
The test set for video super-resolution (6GB): zip
The original test set (not downsampled or downgraded by noise) (15GB): zip
The original training + test set (82GB): zip
Many video processing algorithms rely on optical flow to register different frames within a sequence. However, a precise estimation of optical flow is often neither tractable nor optimal for a particular task. In this paper, we propose task-oriented flow (TOFlow), a flow representation tailored for specific video processing tasks. We design a neural network with a motion estimation component and a video processing component. These two parts can be jointly trained in a self-supervised manner to facilitate learning of the proposed TOFlow. We demonstrate that TOFlow outperforms the traditional optical flow on three different video processing tasks: frame interpolation, video denoising/deblocking, and video super-resolution. We also introduce Vimeo-90K, a large-scale, high-quality video dataset for video processing to better evaluate the proposed algorithm.
@article{xue2019video,
title={Video Enhancement with Task-Oriented Flow},
author={Xue, Tianfan and Chen, Baian and Wu, Jiajun and Wei, Donglai and Freeman, William T},
journal={International Journal of Computer Vision (IJCV)},
volume={127},
number={8},
pages={1106--1125},
year={2019},
publisher={Springer}
}
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。