公开数据集
数据结构 ? 199.52M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Segment Pool Tracking is the framework we presented for the video segmentation problem. The figure above illustrates the core parts of our approach. First, we generate a pool of segmentation for each frame using the CPMC method. Then, image color features (eg. Color-SIFT) are extracted and appearance models are trained incrementally to track multiple segments in consecutive frames. A main contribution is an efficient least-squares formulation to make simultaneously tracking 1,000 targets almost as efficient as tracking a single target. Since the appearance model for each target is learnt over multiple frames on many segments, it is robust to appearance changes and partial occlusions. Lastly, we use Composite Statistical Inference (CSI) to refine segment tracks by infering on high-order appearance terms while imposing temporal consistency.
During tracking, greedy assignment is applied that serves as non-maximum suppression on segment tracks (see figure below). Tracks that are not consistent in appearance are filtered out automatically. Therefore, although we initialize with more than 1,000 tracks, on average only 60 tracks remain at the end of each sequence, while capturing most of the interesting objects.
Results of SPT and CSI on the SegTrack v2 dataset
Image sequence | SPT | SPT+CSI | Pairwise Appearance | Lee et al. | Grundmann et al. | CPMC Best |
---|---|---|---|---|---|---|
(Using Pirsiavash et al.) | (Averaged Per-frame) | |||||
Mean per object | 62.7 | 65.9 | 55.4 | 45.3 | 51.8 | 78.6 |
Mean per sequence | 68.0 | 71.2 | 58.6 | 57.3 | 50.8 | 80.5 |
Girl | 89.1 | 89.2 | 83.4 | 87.7 | 31.9 | 93.5 |
Birdfall | 62.0 | 62.5 | 47.8 | 49.0 | 57.4 | 72.2 |
Parachute | 93.2 | 93.4 | 91.3 | 96.3 | 69.1 | 95.5 |
Cheetah-Deer | 40.1 | 37.3 | 18.3 | 44.5 | 18.8 | 67.0 |
Cheetah-Cheetah | 41.3 | 40.9 | 22.2 | 11.7 | 24.4 | 66.6 |
Monkeydog-Monkey | 58.8 | 71.3 | 24.1 | 74.3 | 68.3 | 83.0 |
Monkeydog-Dog | 17.4 | 18.9 | 16.5 | 4.9 | 18.8 | 44.6 |
Penguin-#1 | 51.4 | 51.5 | 59.3 | 12.6 | 72.0 | 75.8 |
Penguin-#2 | 73.2 | 76.5 | 79.1 | 11.3 | 80.7 | 90.4 |
Penguin-#3 | 69.6 | 75.2 | 75.6 | 11.3 | 75.2 | 85.4 |
Penguin-#4 | 57.6 | 57.8 | 47.1 | 7.7 | 80.6 | 67.6 |
Penguin-#5 | 63.4 | 66.7 | 45.8 | 4.2 | 62.7 | 68.1 |
Penguin-#6 | 48.6 | 50.2 | 56.7 | 8.5 | 75.5 | 76.6 |
Drifting Car-#1 | 73.8 | 74.8 | 65.4 | 63.7 | 55.2 | 82.1 |
Drifting Car-#2 | 58.4 | 60.6 | 59.8 | 30.1 | 27.2 | 75.3 |
Hummingbird-#1 | 45.4 | 54.4 | 35.0 | 46.3 | 13.7 | 70.0 |
Hummingbird-#2 | 65.2 | 72.3 | 65.8 | 74.0 | 25.2 | 82.2 |
Frog | 65.8 | 72.8 | 69.0 | 0 | 67.1 | 87.1 |
Worm | 75.6 | 82.8 | 59.5 | 84.4 | 34.7 | 89.8 |
Soldier | 83.0 | 83.8 | 50.7 | 66.6 | 66.5 | 84.3 |
Monkey | 84.1 | 84.8 | 70.9 | 79.0 | 61.9 | 88.3 |
Bird of Paradise | 88.2 | 94.0 | 81.1 | 92.2 | 86.8 | 94.7 |
BMX-Person | 75.1 | 85.4 | 74.5 | 87.4 | 39.2 | 86.9 |
BMX-Bike | 24.6 | 24.9 | 30.9 | 38.6 | 32.5 | 58.5 |
Avg. Number of Tracks | 60.0 | 60.0 | 702.8 | 10.6 | 336.6 | 1219.3 |
Citation
@inproceedings{FliICCV2013,
author = {Fuxin Li and Taeyoung Kim and Ahmad Humayun and David Tsai and James M. Rehg},
title = { Video Segmentation by Tracking Many Figure-Ground Segments},
booktitle = {ICCV},
year = {2013} }
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。