Select Language

AI社区

公开数据集

GPU内核性能数据集

GPU内核性能数据集

4M
918 浏览
0 喜欢
4 次下载
0 条讨论
Computer Classification

在数据集上实施线性回归模型以预测GPU运行时间。使用四次运行的平均值作为目标变量。不允许您使用回归模型的任何可用实现。您应......

数据结构 ? 4M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    在数据集上实施线性回归模型以预测GPU运行时间。使用四次运行的平均值作为目标变量。不允许您使用回归模型的任何可用实现。您应该通过批量更新实现梯度下降算法(一次使用所有训练示例)。使用通过2 *样本数归一化的误差平方和[J(β0,β1)=(1 / 2m)[Σ(yᶺ(i)– y(i))2])作为成本和误差度量,其中m是样本数。您应该使用所有14个功能。

    还要实现第4部分中所述的逻辑回归模型。同样,您不允许使用任何可用的逻辑回归模型实现。您应该通过批量更新实现梯度下降算法(一次使用所有训练示例)。您应该使用该类中的逻辑回归成本/误差函数。此外,您还可以使用准确性/ ROC /等。

    任务:
    *第1部分:*下载数据集,并使用良好的训练/测试拆分百分比将其随机分为训练和测试集。
    第2部分:设计线性回归模型以对平均GPU运行时间建模。在报告中包括您的回归模型方程式。
    第3部分:使用批处理更新规则实现梯度下降算法。使用与该类相同的成本函数(平方误差之和)。报告您的初始参数值。
    第4部分:将此问题转换为二进制分类问题。目标变量应具有两个类别。进行逻辑回归以对该数据集进行分类。报告训练和测试集的准确性/错误度量。

    实验:
    * 1。*使用线性和逻辑回归的各种参数进行实验(例如,学习率and),并根据变化的参数对训练和测试集的误差/准确性如何变化报告您的发现。绘制结果。报告参数的最佳值。
    2.对线性和逻辑回归的收敛阈值进行各种试验。绘制训练和测试集的误差结果作为阈值的函数,并描述改变阈值如何影响误差。选择最佳阈值,并绘制与梯度下降迭代次数有关的函数图和测试误差(在一个图中)。
    3。随机选择八个功能,仅在这十个功能上重新训练模型。在使用原始特征集(14)和八个随机特征的情况下,比较训练和测试错误结果。报告十个随机选择的功能。
    4.现在,选择八个您认为最适合预测输出的特征,并使用这十个特征重新训练模型。与使用原始功能集的情况和随机功能的情况进行比较。您选择的功能是否比随机选择功能提供更好的结果?为什么?您选择的功能是否比使用所有功能提供更好的结果?为什么?

    资源:

    Enrique G.Paredes(egparedes'@'ifi.uzh.ch)。苏黎世大学信息学系可视化和多媒体实验室。苏黎世,8050年。瑞士
    Rafael Ballester-Ripoll(rballester'@'ifi.uzh.ch)。苏黎世大学信息学系可视化和多媒体实验室。苏黎世,8050。瑞士

    引文:

    如果您使用此数据集,请引用以下一项或两项:


    • 拉斐尔·巴莱斯特·里波尔(Rafael Ballester-Ripoll),恩里克·帕雷德斯(Enrique G.Sobol Tensor火车用于全球敏感性分析。在arXiv计算机科学/数值分析电子版中,2017年


    • 塞德里克·纳格特伦(Cedric Nugteren)和瓦勒留(Valeriu Codreanu)CLTune:用于OpenCL内核的通用自动调谐在:MCSoC:第9届嵌入式多核/多核片上系统国际研讨会。IEEE,2015年

    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:10 去赚积分?
    • 918浏览
    • 4下载
    • 0点赞
    • 收藏
    • 分享