公开数据集
数据结构 ? 1.66G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
UCF体育数据集包括从各种体育运动中收集的一系列动作,这些动作通常在广播电视频道(如BBC和ESPN)上播出。视频序列来自各种素材网站,包括BBC Motion gallery和GettyImages。
该数据集共包含150个序列,分辨率为720 x 480.该集合代表了各种场景和视点中的自然行动池。通过发布数据集,我们希望鼓励在无约束的环境中进一步研究这类动作识别。自推出以来,该数据集已被用于众多应用,例如:动作识别,动作定位和显着性检测。
数据集操作
数据集包括以下10个操作。上图显示了所有十个动作的示例框架,以及以黄色显示的人类边界框注释。
Diving(14个视频)
Golf Swing(18个视频)
Kicking(20个视频)
Lifting(6个视频)
Riding Horse(12个视频)
Running(13个视频)
SkateBoarding(12个视频)
Swing-Bench(20个视频)
Swing-Side(13个视频) )
散步(22视频)
数据集摘要
下表总结了数据集的特征。
图:UCF Sports的特征总结。
统计
下图显示了每个操作的剪辑数量的分布,因为每个类中的剪辑数量不同。
图:每个操作类的剪辑数。
下图说明了每个动作类的剪辑总持续时间(蓝色)和平均剪辑长度(绿色)。显然,与步行或跑步相比,某些动作本质上是短的,例如踢腿,其相对较长并且具有更多的周期性。但是,从图表中可以明显看出,动作片段的平均持续时间在不同类别中表现出很大的相似性。因此,仅考虑一个剪辑的持续时间将不足以识别动作。
图:每个动作类的视频剪辑总时间以蓝色显示。每个动作的平均剪辑长度以绿色显示。
推荐的实验设置
行动认可
Leave-One-Out(LOO)交叉验证方案:建议如[1]中所述,通过使用Leave-One-Out(LOO)交叉验证方案在UCF Sports上进行测试。此场景采用一个示例视频进行测试,并使用动作类的所有剩余视频进行训练。这是以循环方式对每个样本视频执行的,并且通过平均所有迭代的准确度来获得总体准确度。
行动本地化
训练/测试分裂:建议使用[*]中建议的训练/测试分组。拟议的实验设置将数据集分成两个不均匀的部分:三分之二的视频用于培训,三分之一用于测试。为了计算准确度,使用交叉结合标准来绘制具有特定重叠阈值的ROC曲线。交叉联合计算预测的边界框和地面实况之间的重叠,并将其除以每个边界的两个边界框的并集。然后,该值在视频中的所有帧上取平均值。20%的重叠阈值用于该实验。针对重叠阈值的曲线下面积(AUC)(其示出了在阈值改变时性能如何变化)用于计算最终性能。要计算重叠,
[*] Tian Lan,Yang Wang和Greg Mori,用于联合行动本地化和识别的以图形为中心的模型,IEEE国际计算机视觉会议(ICCV),2011。
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。