公开数据集
数据结构 ? 12.11G
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
该数据集为 Deep Convolution Inverse Graphics Network 算法实验数据集。该算法通过生成模型,对图像的平面旋转、光照片画和纹理进行建模。
本文介绍了深度卷积逆向图形网络(DC-IGN),该网络旨在学习可解释的图像表示形式,该图像对于各种变换(例如,对象平面外旋转,光照变化和纹理)是不相关的。DC-IGN模型由多层卷积和反卷积算子组成,并使用随机梯度变化贝叶斯(SGVB)算法(Kingma和Welling)进行训练。我们提出了训练程序,以鼓励图形代码层中的神经元具有语义含义,并迫使每个组分别代表特定的变换(姿势,光线,纹理,形状等)。给定静态的人脸图像,我们的模型可以重新生成输入图像,该输入图像具有与基础人脸不同的姿势,光照甚至纹理和形状变化。我们提供模型功效的定性和定量结果,以学习3D渲染引擎。此外,我们还将学习到的表示形式用于两个重要的视觉识别任务:(1)不变脸部识别任务;(2)将表示形式用作生成建模的摘要统计量。
我们的模型演示在(a)仰角和(b)方位角以及(c)轻神经元上使用不同的3D扫描重新渲染给定的静态图像。
模型架构
深度卷积逆图形网络(DC-IGN)具有编码器和解码器。我们遵循具有多种变体的变体自动编码器(Kingma和Welling)架构。编码器由几层卷积组成,然后是最大池,而解码器则有几层解卷层(使用最近邻居的上采样),然后是卷积。(a)在训练期间,数据(x)通过编码器传递,以产生后验逼近Q(z_i
|
x),其中z_i由场景潜在变量(例如姿势,光线,纹理或形状)组成。为了学习DC-IGN中的参数,使用以下变分对象函数,使用随机梯度下降来反向传播梯度:-log(P(x
| z_i))+ KL(Q(z_i | x)||
P(z_i))对于每个z_i。我们可以通过显示带有一组非活动和活动转换(例如,面部旋转,沿某个方向的光扫掠等)的迷你批处理来强制DC-IGN学习纠缠的表示。(b)在测试期间,数据x可以通过编码器传递以获得潜伏z_i。只需操纵适当的图形代码组(z_i),就可以将图像重新渲染到不同的视点,光照条件,形状变化等,这就是操纵现成的3D图形引擎的方式。
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。