公开数据集
数据结构 ? 142K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Brian Johnson;
Institute for Global Environmental Strategies;
2108-11 Kamiyamaguchi, Hayama, Kanagawa,240-0115 Japan;
Email: Johnson '@' iges.or.jp
Data Set Information:
Contains training and testing data for classifying a high resolution aerial image into 9 types of urban land cover. Multi-scale spectral, size, shape, and texture information are used for classification. There are a low number of training samples for each class (14-30) and a high number of classification variables (148), so it may be an interesting data set for testing feature selection methods. The testing data set is from a random sampling of the image.
Class is the target classification variable. The land cover classes are: trees, grass, soil, concrete, asphalt, buildings, cars, pools, shadows.
Attribute Information:
LEGEND
Class: Land cover class (nominal)
BrdIndx: Border Index (shape variable)
Area: Area in m2 (size variable)
Round: Roundness (shape variable)
Bright: Brightness (spectral variable)
Compact: Compactness (shape variable)
ShpIndx: Shape Index (shape variable)
Mean_G: Green (spectral variable)
Mean_R: Red (spectral variable)
Mean_NIR: Near Infrared (spectral variable)
SD_G: Standard deviation of Green (texture variable)
SD_R: Standard deviation of Red (texture variable)
SD_NIR: Standard deviation of Near Infrared (texture variable)
LW: Length/Width (shape variable)
GLCM1: Gray-Level Co-occurrence Matrix [i forget which type of GLCM metric this one is] (texture variable)
Rect: Rectangularity (shape variable)
GLCM2: Another Gray-Level Co-occurrence Matrix attribute (texture variable)
Dens: Density (shape variable)
Assym: Assymetry (shape variable)
NDVI: Normalized Difference Vegetation Index (spectral variable)
BordLngth: Border Length (shape variable)
GLCM3: Another Gray-Level Co-occurrence Matrix attribute (texture variable)
Note: These variables repeat for each coarser scale (i.e. variable_40, variable_60, ...variable_140).
Relevant Papers:
1. Johnson, B., Xie, Z., 2013. Classifying a high resolution image of an urban area using super-object information. ISPRS Journal of Photogrammetry and Remote Sensing, 83, 40-49.
2. Johnson, B., 2013. High resolution urban land cover classification using a competitive multi-scale object-based approach. Remote Sensing Letters, 4 (2), 131-140.
Citation Request:
Please cite:
1. Johnson, B., Xie, Z., 2013. Classifying a high resolution image of an urban area using super-object information. ISPRS Journal of Photogrammetry and Remote Sensing, 83, 40-49.
2. Johnson, B., 2013. High resolution urban land cover classification using a competitive multi-scale object-based approach. Remote Sensing Letters, 4 (2), 131-140.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。