公开数据集
数据结构 ? 265K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
N. A. Abdulla, naabdulla11 '@' cit.just.edu.jo
Data Set Information:
--- By using a tweet crawler, we collect 2000 labelled tweets (1000 positive tweets and 1000 negative ones)
on various topics such as: politics and arts. These tweets include opinions written in both
Modern Standard Arabic (MSA) and the Jordanian dialect.
--- The selected tweets convey some kind of feelings (positive or negative) and the objective of our model is
to extract valuable information from such tweets in order to determine the sentiment orientation of the inputted text.
The months-long annotation process of the tweets is manually conducted mainly by two human experts
(native speakers of Arabic). If both experts agree on the label of a certain tweet, then the tweet is assigned this label.
Otherwise, a third expert is consulted to break the tie.
--- Predicted attribute: class of opinion polarity.
Attribute Information:
1. Tweet as a string vector
2. class:
-- Positive polarity
-- Negative poalrity
Summary Statistics:
Positive Negative
Total tweets 1000 1000
Total words 7189 9769
Avg. words in each tweet 7.19 9.97
Avg. characters in each tweet 40.04 59.02
Relevant Papers:
Abdulla N. A., Mahyoub N. A., Shehab M., Al-Ayyoub M.,a€?Arabic Sentiment Analysis: Corpus-based and Lexicon-baseda€?,IEEE conference on Applied Electrical Engineering and Computing Technologies (AEECT 2013),December 3-12, 2013, Amman, Jordan. (Accepted for Publication).
Citation Request:
Please cite the above paper if you utilize the data set.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。