Select Language

AI社区

公开数据集

Syskill和Webert网页评级数据集

Syskill和Webert网页评级数据集

468K
739 浏览
0 喜欢
0 次下载
0 条讨论
Computer Classification

Michael PazzaniDepartment of Information and Computer Science,University of California, IrvineIrvine, CA 92697-3425 pazz......

数据结构 ? 468K

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Michael Pazzani
    Department of Information and Computer Science,
    University of California, Irvine
    Irvine, CA 92697-3425
    pazzani '@' ics.uci.edu
    http://www.ics.uci.edu/~pazzani


    Data Set Information:

    The HTML source of a web page is given. Users looked at each web page and inidated on a 3 point scale (hot medium cold) 50-100 pages per domain. However, this is realistic because we want to learn user profiles from as few examples as possible so that users have an incentitive to rate pages.


    Attribute Information:

    Each subject is in a separate directory. Within each directory, there is an file named "index". The index contains information on the other files. Each entry is a line of the form:

    file-name  |  rating  |  url  |  date-rated  |  title

    where file-name is the name of a file (usually an integer), rating is hot, medium, or cold. There are so few medium's that mediums are usually merged with cold in experiments.

    The other fields aren't used in learning, but they are collected by the interface for other purposes. They are the url of the html source, the date rated and the title of the web oage.


    Relevant Papers:

    Pazzani M., Billsus, D. (1997). Learning and Revising User Profiles: The identification of interesting web sites. Machine Learning 27, 313-331
    [Web link]

    Pazzani, M., Muramatsu J., Billsus, D. (1996). Syskill & Webert: Identifying interesting web sites. Proceedings of the National Conference on Artificial Intelligence, Portland, OR. PDF
    [Web link]


    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:6 去赚积分?
    • 739浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享