公开数据集
数据结构 ? 842M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Daniel Whiteson daniel '@' uci.edu, Assistant Professor, Physics & Astronomy, Univ. of California Irvine
Data Set Information:
Provide all relevant informatioThe data has been produced using Monte Carlo simulations. The first 8 features are kinematic properties measured by the particle detectors in the accelerator. The last ten features are functions of the first 8 features; these are high-level features derived by physicists to help discriminate between the two classes. There is an interest in using deep learning methods to obviate the need for physicists to manually develop such features. Benchmark results using Bayesian Decision Trees from a standard physics package and 5-layer neural networks and the dropout algorithm are presented in the original paper. The last 500,000 examples are used as a test set.n about your data set.
Attribute Information:
The first column is the class label (1 for signal, 0 for background), followed by the 18 features (8 low-level features then 10 high-level features):: lepton 1 pT, lepton 1 eta, lepton 1 phi, lepton 2 pT, lepton 2 eta, lepton 2 phi, missing energy magnitude, missing energy phi, MET_rel, axial MET, M_R, M_TR_2, R, MT2, S_R, M_Delta_R, dPhi_r_b, cos(theta_r1). For detailed information about each feature see the original paper.
Relevant Papers:
Baldi, P., P. Sadowski, and D. Whiteson. “Searching for Exotic Particles in High-energy Physics with Deep Learning.” Nature Communications 5 (July 2, 2014)
Citation Request:
Baldi, P., P. Sadowski, and D. Whiteson. “Searching for Exotic Particles in High-energy Physics with Deep Learning.” Nature Communications 5 (July 2, 2014)
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。