Select Language

AI社区

公开数据集

SUSY数据集,蒙特卡罗模拟生成的数据集,加速器中的粒子探测器测量的运动学特性及功能

SUSY数据集,蒙特卡罗模拟生成的数据集,加速器中的粒子探测器测量的运动学特性及功能

842M
828 浏览
0 喜欢
2 次下载
0 条讨论
Physical Classification

Daniel Whiteson daniel '@' uci.edu, Assistant Professor, PhysicsAstronomy, Univ. of California IrvineData Set In......

数据结构 ? 842M

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Daniel Whiteson daniel '@' uci.edu, Assistant Professor, Physics & Astronomy, Univ. of California Irvine


    Data Set Information:

    Provide all relevant informatioThe data has been produced using Monte Carlo simulations. The first 8 features are kinematic properties measured by the particle detectors in the accelerator. The last ten features are functions of the first 8 features; these are high-level features derived by physicists to help discriminate between the two classes. There is an interest in using deep learning methods to obviate the need for physicists to manually develop such features. Benchmark results using Bayesian Decision Trees from a standard physics package and 5-layer neural networks and the dropout algorithm are presented in the original paper. The last 500,000 examples are used as a test set.n about your data set.


    Attribute Information:

    The first column is the class label (1 for signal, 0 for background), followed by the 18 features (8 low-level features then 10 high-level features):: lepton  1 pT, lepton  1 eta, lepton  1 phi, lepton  2 pT, lepton  2 eta, lepton  2 phi, missing energy magnitude, missing energy phi, MET_rel, axial MET, M_R, M_TR_2, R, MT2, S_R, M_Delta_R, dPhi_r_b, cos(theta_r1). For detailed information about each feature see the original paper.


    Relevant Papers:

    Baldi, P., P. Sadowski, and D. Whiteson. “Searching for Exotic Particles in High-energy Physics with Deep Learning.” Nature Communications 5 (July 2, 2014)



    Citation Request:

    Baldi, P., P. Sadowski, and D. Whiteson. “Searching for Exotic Particles in High-energy Physics with Deep Learning.” Nature Communications 5 (July 2, 2014)

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:10 去赚积分?
    • 828浏览
    • 2下载
    • 0点赞
    • 收藏
    • 分享