公开数据集
数据结构 ? 3K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
N/A
Data Set Information:
Cost Matrix
_______ abse pres
absence 0 1
presence 5 0
where the rows represent the true values and the columns the predicted.
Attribute Information:
Attribute Information:
------------------------
-- 1. age
-- 2. sex
-- 3. chest pain type (4 values)
-- 4. resting blood pressure
-- 5. serum cholesterol in mg/dl
-- 6. fasting blood sugar > 120 mg/dl
-- 7. resting electrocardiographic results (values 0,1,2)
-- 8. maximum heart rate achieved
-- 9. exercise induced angina
-- 10. oldpeak = ST depression induced by exercise relative to rest
-- 11. the slope of the peak exercise ST segment
-- 12. number of major vessels (0-3) colored by flourosopy
-- 13. thal: 3 = normal; 6 = fixed defect; 7 = reversable defect
Attributes types
-----------------
Real: 1,4,5,8,10,12
Ordered:11,
Binary: 2,6,9
Nominal:7,3,13
Variable to be predicted
------------------------
Absence (1) or presence (2) of heart disease
Relevant Papers:
N/A
Papers That Cite This Data Set1:
Gavin Brown. Diversity in Neural Network Ensembles. The University of Birmingham. 2004. [View Context].
Igor Kononenko and Edvard Simec and Marko Robnik-Sikonja. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl. Intell, 7. 1997. [View Context].
Elena Smirnova and Ida G. Sprinkhuizen-Kuyper and I. Nalbantis and b. ERIM and Universiteit Rotterdam. Unanimous Voting using Support Vector Machines. IKAT, Universiteit Maastricht. [View Context].
Alexander K. Seewald. Dissertation Towards Understanding Stacking Studies of a General Ensemble Learning Scheme ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Naturwissenschaften. [View Context].
Citation Request:
Please refer to the Machine Learning Repository's citation policy
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。