Select Language

AI社区

公开数据集

SPECT心脏数据集,267个SPE CT图像集(患者)的数据库

SPECT心脏数据集,267个SPE CT图像集(患者)的数据库

27K
1737 浏览
0 喜欢
3 次下载
0 条讨论
Life Classification

Data Set Information:数据集描述了心脏单质子发射计算机断层扫描(SPECT)图像的诊断。每个患者分为两类:正常和异常。对267个S......

数据结构 ? 27K

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Data Set Information:

    数据集描述了心脏单质子发射计算机断层扫描(SPECT)图像的诊断。每个患者分为两类:正常和异常。对267个SPECT图像集(患者)的数据库进行处理,以提取总结原始SPECT图像的特征。结果,为每个患者创建了44个连续特征模式。对该模式进行进一步处理,得到22个二值特征模式。使用CLIP3算法从这些模式生成分类规则。CLIP3算法生成的规则准确率为84.0%(与心脏病专家的诊断相比)。

    SPECT是测试ML算法的良好数据集;它有267个实例,由23个二进制属性描述:

    Attribute Information:

    1.  OVERALL_DIAGNOSIS: 0,1 (class attribute, binary)
      2.  F1:  0,1 (the partial diagnosis 1, binary)
      3.  F2:  0,1 (the partial diagnosis 2, binary)
      4.  F3:  0,1 (the partial diagnosis 3, binary)
      5.  F4:  0,1 (the partial diagnosis 4, binary)
      6.  F5:  0,1 (the partial diagnosis 5, binary)
      7.  F6:  0,1 (the partial diagnosis 6, binary)
      8.  F7:  0,1 (the partial diagnosis 7, binary)
      9.  F8:  0,1 (the partial diagnosis 8, binary)
      10. F9:  0,1 (the partial diagnosis 9, binary)
      11. F10: 0,1 (the partial diagnosis 10, binary)
      12. F11: 0,1 (the partial diagnosis 11, binary)
      13. F12: 0,1 (the partial diagnosis 12, binary)
      14. F13: 0,1 (the partial diagnosis 13, binary)
      15. F14: 0,1 (the partial diagnosis 14, binary)
      16. F15: 0,1 (the partial diagnosis 15, binary)
      17. F16: 0,1 (the partial diagnosis 16, binary)
      18. F17: 0,1 (the partial diagnosis 17, binary)
      19. F18: 0,1 (the partial diagnosis 18, binary)
      20. F19: 0,1 (the partial diagnosis 19, binary)
      21. F20: 0,1 (the partial diagnosis 20, binary)
      22. F21: 0,1 (the partial diagnosis 21, binary)
      23. F22: 0,1 (the partial diagnosis 22, binary)
      - dataset is divided into:
    -- training data ("SPECT.train" 80 instances)
    -- testing data ("SPECT.test" 187 instances)


    Relevant Papers:

    Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M. & Goodenday, L.S. "Knowledge Discovery Approach to Automated Cardiac SPECT Diagnosis" Artificial Intelligence in Medicine, vol. 23:2, pp 149-169, Oct 2001
    [Web link]

    Cios, K.J., Wedding, D.K. & Liu, N. CLIP3: cover learning using integer programming. Kybernetes, 26:4-5, pp 513-536, 1997

    Cios K. J. & Kurgan L. Hybrid Inductive Machine Learning: An Overview of CLIP Algorithms,  In: Jain L.C., and Kacprzyk J. (Eds). New Learning Paradigms in Soft Computing, Physica-Verlag (Springer), 2001
    [Web link]


    Papers That Cite This Data Set1:


    Rich Caruana and Alexandru Niculescu-Mizil. An Empirical evaluation of Supervised Learning for ROC Area. ROCAI. 2004.  [View Context].

    Michael G. Madden. evaluation of the Performance of the Markov Blanket Bayesian Classifier Algorithm. CoRR, csLG/0211003. 2002.  [View Context].

    Lukasz A. Kurgan and Waldemar Swiercz and Krzysztof J. Cios. Semantic Mapping of XML Tags Using Inductive Machine Learning. ICMLA. 2002.  [View Context].

    M. A. Galway and Michael G. Madden. DEPARTMENT OF INFORMATION TECHNOLOGY technical report NUIG-IT-011002 evaluation of the Performance of the Markov Blanket Bayesian Classifier Algorithm. Department of Information Technology National University of Ireland, Galway.  [View Context].


    Citation Request:

    Please refer to the Machine Learning Repository's citation policy


    Original Owners:

    Krzysztof J. Cios, Lukasz A. Kurgan
    University of Colorado at Denver, Denver, CO 80217, U.S.A.
    Krys.Cios '@' cudenver.edu
    Lucy S. Goodenday
    Medical College of Ohio, OH, U.S.A.

    Donors:

    Lukasz A.Kurgan, Krzysztof J. Cios

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:15 去赚积分?
    • 1737浏览
    • 3下载
    • 0点赞
    • 收藏
    • 分享