公开数据集
数据结构 ? 27K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Data Set Information:
数据集描述了心脏单质子发射计算机断层扫描(SPECT)图像的诊断。每个患者分为两类:正常和异常。对267个SPECT图像集(患者)的数据库进行处理,以提取总结原始SPECT图像的特征。结果,为每个患者创建了44个连续特征模式。对该模式进行进一步处理,得到22个二值特征模式。使用CLIP3算法从这些模式生成分类规则。CLIP3算法生成的规则准确率为84.0%(与心脏病专家的诊断相比)。
SPECT是测试ML算法的良好数据集;它有267个实例,由23个二进制属性描述:
Attribute Information:
1. OVERALL_DIAGNOSIS: 0,1 (class attribute, binary)
2. F1: 0,1 (the partial diagnosis 1, binary)
3. F2: 0,1 (the partial diagnosis 2, binary)
4. F3: 0,1 (the partial diagnosis 3, binary)
5. F4: 0,1 (the partial diagnosis 4, binary)
6. F5: 0,1 (the partial diagnosis 5, binary)
7. F6: 0,1 (the partial diagnosis 6, binary)
8. F7: 0,1 (the partial diagnosis 7, binary)
9. F8: 0,1 (the partial diagnosis 8, binary)
10. F9: 0,1 (the partial diagnosis 9, binary)
11. F10: 0,1 (the partial diagnosis 10, binary)
12. F11: 0,1 (the partial diagnosis 11, binary)
13. F12: 0,1 (the partial diagnosis 12, binary)
14. F13: 0,1 (the partial diagnosis 13, binary)
15. F14: 0,1 (the partial diagnosis 14, binary)
16. F15: 0,1 (the partial diagnosis 15, binary)
17. F16: 0,1 (the partial diagnosis 16, binary)
18. F17: 0,1 (the partial diagnosis 17, binary)
19. F18: 0,1 (the partial diagnosis 18, binary)
20. F19: 0,1 (the partial diagnosis 19, binary)
21. F20: 0,1 (the partial diagnosis 20, binary)
22. F21: 0,1 (the partial diagnosis 21, binary)
23. F22: 0,1 (the partial diagnosis 22, binary)
- dataset is divided into:
-- training data ("SPECT.train" 80 instances)
-- testing data ("SPECT.test" 187 instances)
Relevant Papers:
Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M. & Goodenday, L.S. "Knowledge Discovery Approach to Automated Cardiac SPECT Diagnosis" Artificial Intelligence in Medicine, vol. 23:2, pp 149-169, Oct 2001
[Web link]
Cios, K.J., Wedding, D.K. & Liu, N. CLIP3: cover learning using integer programming. Kybernetes, 26:4-5, pp 513-536, 1997
Cios K. J. & Kurgan L. Hybrid Inductive Machine Learning: An Overview of CLIP Algorithms, In: Jain L.C., and Kacprzyk J. (Eds). New Learning Paradigms in Soft Computing, Physica-Verlag (Springer), 2001
[Web link]
Papers That Cite This Data Set1:
Rich Caruana and Alexandru Niculescu-Mizil. An Empirical evaluation of Supervised Learning for ROC Area. ROCAI. 2004. [View Context].
Michael G. Madden. evaluation of the Performance of the Markov Blanket Bayesian Classifier Algorithm. CoRR, csLG/0211003. 2002. [View Context].
Lukasz A. Kurgan and Waldemar Swiercz and Krzysztof J. Cios. Semantic Mapping of XML Tags Using Inductive Machine Learning. ICMLA. 2002. [View Context].
M. A. Galway and Michael G. Madden. DEPARTMENT OF INFORMATION TECHNOLOGY technical report NUIG-IT-011002 evaluation of the Performance of the Markov Blanket Bayesian Classifier Algorithm. Department of Information Technology National University of Ireland, Galway. [View Context].
Citation Request:
Please refer to the Machine Learning Repository's citation policy
Original Owners:
Krzysztof J. Cios, Lukasz A. Kurgan
University of Colorado at Denver, Denver, CO 80217, U.S.A.
Krys.Cios '@' cudenver.edu
Lucy S. Goodenday
Medical College of Ohio, OH, U.S.A.
Donors:
Lukasz A.Kurgan, Krzysztof J. Cios
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。