公开数据集
数据结构 ? 12.8K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Ulrike Gr?mping
Beuth University of Applied Sciences Berlin
Website with contact information: https://prof.beuth-hochschule.de/groemping/
Data Set Information:
The widely used Statlog German credit data ([Web link]), as of November 2019, suffers from severe errors in the coding information and does not come with any background information. The 'South German Credit' data provide a correction and some background information, based on the Open Data LMU (2010) representation of the same data and several other German language resources.
Attribute Information:
## This section contains a brief description for each attribute.
## Details on attribute coding can be obtained from the accompanying R code for reading the data
## or the accompanying code table,
## as well as from Groemping (2019) (listed under 'Relevant Papers').
Column name: laufkont
Variable name: status
Content: status of the debtor's checking account with the bank (categorical)
Column name: laufzeit
Variable name: duration
Content: credit duration in months (quantitative)
Column name: moral
Variable name: credit_history
Content: history of compliance with previous or concurrent credit contracts (categorical)
Column name: verw
Variable name: purpose
Content: purpose for which the credit is needed (categorical)
Column name: hoehe
Variable name: amount
Content: credit amount in DM (quantitative; result of monotonic transformation; actual data and type of
transformation unknown)
Column name: sparkont
Variable name: savings
Content: debtor's savings (categorical)
Column name: beszeit
Variable name: employment_duration
Content: duration of debtor's employment with current employer (ordinal; discretized quantitative)
Column name: rate
Variable name: installment_rate
Content: credit installments as a percentage of debtor's disposable income (ordinal; discretized quantitative)
Column name: famges
Variable name: personal_status_sex
Content: combined information on sex and marital status; categorical; sex cannot be recovered from the
variable, because male singles and female non-singles are coded with the same code (2); female widows cannot
be easily classified, because the code table does not list them in any of the female categories
Column name: buerge
Variable name: other_debtors
Content: Is there another debtor or a guarantor for the credit? (categorical)
Column name: wohnzeit
Variable name: present_residence
Content: length of time (in years) the debtor lives in the present residence (ordinal; discretized quantitative)
Column name: verm
Variable name: property
Content: the debtor's most valuable property, i.e. the highest possible code is used. Code 2 is used, if codes 3
or 4 are not applicable and there is a car or any other relevant property that does not fall under variable
sparkont. (ordinal)
Column name: alter
Variable name: age
Content: age in years (quantitative)
Column name: weitkred
Variable name: other_installment_plans
Content: installment plans from providers other than the credit-giving bank (categorical)
Column name: wohn
Variable name: housing
Content: type of housing the debtor lives in (categorical)
Column name: bishkred
Variable name: number_credits
Content: number of credits including the current one the debtor has (or had) at this bank (ordinal, discretized
quantitative); contrary to Fahrmeir and Hamerle?¢a??a?¢s (1984) statement, the original data values are not available.
Column name: beruf
Variable name: job
Content: quality of debtor's job (ordinal)
Column name: pers
Variable name: people_liable
Content: number of persons who financially depend on the debtor (i.e., are entitled to maintenance) (binary,
discretized quantitative)
Column name: telef
Variable name: telephone
Content: Is there a telephone landline registered on the debtor's name? (binary; remember that the data are
from the 1970s)
Column name: gastarb
Variable name: foreign_worker
Content: Is the debtor a foreign worker? (binary)
Column name: kredit
Variable name: credit_risk
Content: Has the credit contract been complied with (good) or not (bad) ? (binary)
Relevant Papers:
Fahrmeir, L. and Hamerle, A. (1981, in German). Kategoriale Regression in der betrieblichen Planung. *Zeitschrift f?r Operations Research* **25**, B63-B78.
Fahrmeir, L. and Hamerle, A. (1984, in German). *Multivariate Statistische Verfahren* (1st ed., Ch.8 and Appendix C). De Gruyter, Berlin.
Gr?mping, U. (2019). South German Credit data: Correcting a Widely Used Data Set. Report 4/2019, Reports in Mathematics, Physics and Chemistry, Department II, Beuth University of Applied Sciences Berlin. URL: [[Web link]].
H?u?ler, W.M. (1979, in German). Empirische Ergebnisse zu Diskriminationsverfahren bei Kreditscoringsystemen. *Zeitschrift f?r Operations Research* **23**, B191-B210.
Hofmann, H.J. (1990, in German). Die Anwendung des CART-Verfahrens zur statistischen Bonit?tsanalyse von Konsumentenkrediten. *Zeitschrift f?r Betriebswirtschaft* **60**, 941-962.
Open data LMU (2010; accessed Nov 27 2019; in German). Kreditscoring zur Klassifikation von Kreditnehmern. URL: [[Web link]].
Citation Request:
Gr?mping, U. (2019). South German Credit data: Correcting a Widely Used Data Set. Report 4/2019, Reports in Mathematics, Physics and Chemistry, Department II, Beuth University of Applied Sciences Berlin.
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。