Select Language

AI社区

公开数据集

SIFT10M数据集,已用于评估近似近邻搜索方法

SIFT10M数据集,已用于评估近似近邻搜索方法

7.3G
658 浏览
0 喜欢
0 次下载
0 条讨论
Computer Causal-Discovery

Xiping Fu, Brendan McCane, Steven Mills, Michael Albert and Lech SzymanskiDepartment of Computer Science, University of......

数据结构 ? 7.3G

    Data Structure ?

    * 以上分析是由系统提取分析形成的结果,具体实际数据为准。

    README.md

    Xiping Fu, Brendan McCane, Steven Mills, Michael Albert and Lech Szymanski
    Department of Computer Science, University of Otago, Dunedin, New Zealand
    {xiping, mccane, steven, malbert, lechszym}@cs.otago.ac.nz


    Data Set Information:

    In SIFT10M, the titles of the png files indicate the columns position of the SIFT features. This data set has been used for evaluating the approximate nearest neighbour search methods. The patches can be used for visualisation purpose and helps for analysing the performance of the corresponding approximate nearest neighbour search methods.


    Attribute Information:

    Each SIFT feature is a 128D column, and the corresponding patch is saved in  41*41 png format. The png files are compressed into 307 tar files for downloading.


    Relevant Papers:

    Xiping Fu, Brendan McCane, Steven Mills, and Michael Albert, 'NOKMeans: Non-orthogonal K-means hashing', in Asian Conference on Computer Vision (ACCV14). pp 162--177.
    Xiping Fu, Brendan McCane, Steven Mills, Michael Albert, and Lech Szymanski, 'Auto-JacoBin: Auto-encoder Jacobian Binary Hashing', submitted to PAMI.



    Citation Request:

    Please refer to the Machine Learning Repository's citation policy

    ×

    帕依提提提温馨提示

    该数据集正在整理中,为您准备了其他渠道,请您使用

    注:部分数据正在处理中,未能直接提供下载,还请大家理解和支持。
    暂无相关内容。
    暂无相关内容。
    • 分享你的想法
    去分享你的想法~~

    全部内容

      欢迎交流分享
      开始分享您的观点和意见,和大家一起交流分享.
    所需积分:9 去赚积分?
    • 658浏览
    • 0下载
    • 0点赞
    • 收藏
    • 分享