公开数据集
数据结构 ? 56.2K
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
Original Owner and Donor:
Luis Seabra Lopes and Luis M. Camarinha-Matos
Universidade Nova de Lisboa,
Monte da Caparica, Portugal
Data Set Information:
The donation includes 5 datasets, each of them defining a different learning problem:
* LP1: failures in approach to grasp position
* LP2: failures in transfer of a part
* LP3: position of part after a transfer failure
* LP4: failures in approach to ungrasp position
* LP5: failures in motion with part
In order to improve classification accuracy, a set of five feature transformation strategies (based on statistical summary features, discrete Fourier transform, etc.) was defined and evaluated. This enabled an average improvement of 20% in accuracy. The most accessible reference is [Seabra Lopes and Camarinha-Matos, 1998].
Attribute Information:
All features are numeric although they are integer valued only. Each feature represents a force or a torque measured after failure detection; each failure instance is characterized in terms of 15 force/torque samples collected at regular time intervals starting immediately after failure detection; The total observation window for each failure instance was of 315 ms.
Each example is described as follows:
class
Fx1 Fy1 Fz1 Tx1 Ty1 Tz1
Fx2 Fy2 Fz2 Tx2 Ty2 Tz2
......
Fx15 Fy15 Fz15 Tx15 Ty15 Tz15
where Fx1 ... Fx15 is the evolution of force Fx in the observation window, the same for Fy, Fz and the torques; there is a total of 90 features.
Relevant Papers:
Seabra Lopes, L. (1997) "Robot Learning at the Task Level: a Study in the Assembly Domain", Ph.D. thesis, Universidade Nova de Lisboa, Portugal.
[Web link]
Seabra Lopes, L. and L.M. Camarinha-Matos (1998) Feature Transformation Strategies for a Robot Learning Problem, "Feature Extraction, Construction and Selection. A Data Mining Perspective", H. Liu and H. Motoda (edrs.), Kluwer Academic Publishers.
[Web link]
Camarinha-Matos, L.M., L. Seabra Lopes, and J. Barata (1996) Integration and Learning in Supervision of Flexible Assembly Systems, "IEEE Transactions on Robotics and Automation", 12 (2), 202-219.
[Web link]
Citation Request:
Please refer to the Machine Learning Repository's citation policy
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。