公开数据集
数据结构 ? 17M
Data Structure ?
* 以上分析是由系统提取分析形成的结果,具体实际数据为准。
README.md
F. Graf, H.-P. Kriegel, M. Schubert, S. Poelsterl, A. Cavallaro
Ludwig-Maximilians-Universit?¤t Munich
Database Systems Group
Oettingenstra??e 67
80538 Munich, Germany
Data Set Information:
The data was retrieved from a set of 53500 CT images from 74 different
patients (43 male, 31 female).
Each CT slice is described by two histograms in polar space.
The first histogram describes the location of bone structures in the image,
the second the location of air inclusions inside of the body.
Both histograms are concatenated to form the final feature vector.
Bins that are outside of the image are marked with the value -0.25.
The class variable (relative location of an image on the axial axis) was
constructed by manually annotating up to 10 different distinct landmarks in
each CT Volume with known location. The location of slices in between
landmarks was interpolated.
Attribute Information:
1. patientId: Each ID identifies a different patient
2. - 241.: Histogram describing bone structures
242. - 385.: Histogram describing air inclusions
386. reference: Relative location of the image on the axial axis (class
value). Values are in the range [0; 180] where 0 denotes
the top of the head and 180 the soles of the feet.
Relevant Papers:
1. F. Graf, H.-P. Kriegel, M. Schubert, S. Poelsterl, A. Cavallaro
2D Image Registration in CT Images using Radial Image Descriptors
In Medical Image Computing and Computer-Assisted Intervention (MICCAI),
Toronto, Canada, 2011.
The data was used to predict the relative location of CT slices on
the axial axis using k-nearest neighbor search.
2. F. Graf, H.-P. Kriegel, S. P??lsterl, M. Schubert, A. Cavallaro
Position Prediction in CT Volume Scans
In Proceedings of the 28th International Conference on Machine
Learning (ICML) Workshop on Learning for Global Challenges,
Bellevue, Washington, WA, 2011.
Here, the data was used to apply weighted combinations of image
features for the localization of small sub volumes in CT scans.
3. Cheng, Ming-Yen, and Hau-tieng Wu. "Local Linear Regression on Manifolds and its Geometric Interpretation." arXiv preprint (2012).
Citation Request:
Please refer to the Machine Learning Repository's citation policy
帕依提提提温馨提示
该数据集正在整理中,为您准备了其他渠道,请您使用
- 分享你的想法
全部内容
数据使用声明:
- 1、该数据来自于互联网数据采集或服务商的提供,本平台为用户提供数据集的展示与浏览。
- 2、本平台仅作为数据集的基本信息展示、包括但不限于图像、文本、视频、音频等文件类型。
- 3、数据集基本信息来自数据原地址或数据提供方提供的信息,如数据集描述中有描述差异,请以数据原地址或服务商原地址为准。
- 1、本站中的所有数据集的版权都归属于原数据发布者或数据提供方所有。
- 1、如您需要转载本站数据,请保留原数据地址及相关版权声明。
- 1、如本站中的部分数据涉及侵权展示,请及时联系本站,我们会安排进行数据下线。